Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1973 Mar;47(3):529–542. doi: 10.1111/j.1476-5381.1973.tb08184.x

The uptake of 3H-γ-aminobutyric acid by the retina

Margaret Goodchild, M J Neal
PMCID: PMC1776277  PMID: 4730830

Abstract

1. The accumulation of 3H-γ-aminobutyric acid (GABA) by the isolated rat retina has been measured.

2. When retinae were incubated at 37° C in a medium containing 3H-GABA, tissue:medium ratios of about 25:1 were attained after a 30 min incubation.

3. After incubations of 40 min at 37° C, almost all (98%) the radioactivity in the tissue was present as unchanged 3H-GABA.

4. The process responsible for 3H-GABA uptake showed many of the properties of an active uptake system: it was temperature-sensitive, required the presence of sodium ions in the external medium, was inhibited by anoxia, dinitrophenol and ouabain, and showed saturation kinetics.

5. The estimated Km value of GABA was 4·0 × 10-5M, and Vmax was 0·167 (μmoles/min)/g retina.

6. The uptake of 3H-GABA was not affected by the presence of large molar excesses of glycine, L-glutamate, L-aspartate, L-alanine, L-proline, or L-histidine, but was inhibited by DL-γ-amino-β-hydroxybutyrate, β-guanidinopropionate, and L-2,4-diaminobutyrate.

7. The retina was capable of achieving a large net uptake of GABA, indicating that the accumulation of 3H-GABA by the tissue was not due only to an exchange process with the endogenous GABA pool.

8. The uptake of 3H-GABA occurred only in tissue from the central nervous system. Thus, retina and cerebral cortex rapidly accumulated radioactivity, but slices of cornea, posterior wall of the eye, and liver achieved tissue: medium ratios of approximately one.

9. There was a rapid efflux of radioactivity from retinae placed in fresh medium and after 60 min, 90% of the radioactivity was lost from the tissue. The radioactivity released into the medium was present largely as 3H-acidic and neutral metabolites. When the metabolism of GABA was inhibited by the presence of amino-oxyacetic acid in the medium, only about 10% of the radio-activity was lost from the tissue during a similar 60 min incubation, and the radioactivity released was present largely as unchanged 3H-GABA.

10. It is suggested that the GABA uptake process may represent a possible mechanism for the inactivation of GABA if this amino acid is released at inhibitory synapses in the retina.

Full text

PDF
529

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames A., 3rd, Pollen D. A. Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J Neurophysiol. 1969 May;32(3):424–442. doi: 10.1152/jn.1969.32.3.424. [DOI] [PubMed] [Google Scholar]
  2. Bloom F. E., Iversen L. L. Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature. 1971 Feb 26;229(5287):628–630. doi: 10.1038/229628a0. [DOI] [PubMed] [Google Scholar]
  3. Curtis D. R., Duggan A. W., Johnston G. A. The inactivation of extracellularly administered amino acids in the feline spinal cord. Exp Brain Res. 1970 Jun 25;10(5):447–462. doi: 10.1007/BF00234262. [DOI] [PubMed] [Google Scholar]
  4. Dowling J. E. The site of visual adaptation. Science. 1967 Jan 20;155(3760):273–279. doi: 10.1126/science.155.3760.273. [DOI] [PubMed] [Google Scholar]
  5. ELLIOTT K. A., VAN GELDER N. M. Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem. 1958 Oct;3(1):28–40. doi: 10.1111/j.1471-4159.1958.tb12606.x. [DOI] [PubMed] [Google Scholar]
  6. Ehinger B. Autoradiographic identification of rabbit retinal neurons that take up GABA. Experientia. 1970 Oct 15;26(10):1063–1064. doi: 10.1007/BF02112673. [DOI] [PubMed] [Google Scholar]
  7. Ehinger B., Falck B. Autoradiography of some suspected neurotransmitter substances: GABA glycine, glutamic acid, histamine, dopamine, and L-dopa. Brain Res. 1971 Oct 8;33(1):157–172. doi: 10.1016/0006-8993(71)90314-3. [DOI] [PubMed] [Google Scholar]
  8. Goodchild M., Neal M. J. Uptake of 3H-gamma-aminobutyric acid (GABA) by rat retina. J Physiol. 1970 Sep;210(2):182P–183P. [PubMed] [Google Scholar]
  9. Graham L. T. Intraretinal distribution of GABA content and GAD activity. Brain Res. 1972 Jan 28;36(2):476–479. doi: 10.1016/0006-8993(72)90759-7. [DOI] [PubMed] [Google Scholar]
  10. Graham L. T., Jr, Baxter C. F., Lolley R. N. In vivo influence of light or darkness on the GABA system in the retina of the frog (Rana pipiens). Brain Res. 1970 Jun 15;20(3):379–388. doi: 10.1016/0006-8993(70)90168-x. [DOI] [PubMed] [Google Scholar]
  11. Hebb C. CNS at the cellular level: identity of transmitter agents. Annu Rev Physiol. 1970;32:165–192. doi: 10.1146/annurev.ph.32.030170.001121. [DOI] [PubMed] [Google Scholar]
  12. Hökfelt T., Ljungdahl A. Cellular localization of labeled gamma-aminobutyric acid (3H-GABA) in rat cerebellar cortex: an autoradiographic study. Brain Res. 1970 Sep 16;22(3):391–396. doi: 10.1016/0006-8993(70)90480-4. [DOI] [PubMed] [Google Scholar]
  13. Iversen L. L., Johnston G. A. GABA uptake in rat central nervous system: comparison of uptake in slices and homogenates and the effects of some inhibitors. J Neurochem. 1971 Oct;18(10):1939–1950. doi: 10.1111/j.1471-4159.1971.tb09600.x. [DOI] [PubMed] [Google Scholar]
  14. Iversen L. L., Neal M. J. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968 Oct;15(10):1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x. [DOI] [PubMed] [Google Scholar]
  15. Johnston G. A., Iversen L. L. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J Neurochem. 1971 Oct;18(10):1951–1961. doi: 10.1111/j.1471-4159.1971.tb09601.x. [DOI] [PubMed] [Google Scholar]
  16. KOJIMA K., MIZUNO K., MIYAZAKI M. gamma-Amino-butyric acid in ocular tissue. Nature. 1958 Apr 26;181(4617):1200–1201. doi: 10.1038/1811200a0. [DOI] [PubMed] [Google Scholar]
  17. Kishida K., Naka K. I. Amino acids and the spikes from the retinal ganglion cells. Science. 1967 May 5;156(3775):648–650. doi: 10.1126/science.156.3775.648. [DOI] [PubMed] [Google Scholar]
  18. Kramer S. Z., Sherman P. A., Seifter J. Effects of gamma-aminobutyric acid (GABA) and sodium L-glutamate (glutamate) on the visual system and EEG of chicks. Int J Neuropharmacol. 1967 Nov;6(6):463–472. doi: 10.1016/0028-3908(67)90046-9. [DOI] [PubMed] [Google Scholar]
  19. Krnjević K. Glutamate and gamma-aminobutyric acid in brain. Nature. 1970 Oct 10;228(5267):119–124. doi: 10.1038/228119a0. [DOI] [PubMed] [Google Scholar]
  20. Krnjević K., Schwartz S. The action of gamma-aminobutyric acid on cortical neurones. Exp Brain Res. 1967;3(4):320–336. doi: 10.1007/BF00237558. [DOI] [PubMed] [Google Scholar]
  21. Kuriyama K., Sisken B., Haber B., Roberts E. The gamma-aminobutyric acid system in rabbit retina. Brain Res. 1968 Jun;9(1):165–168. doi: 10.1016/0006-8993(68)90269-2. [DOI] [PubMed] [Google Scholar]
  22. Lam D. M., Steinman L. The uptake of ( - 3 H) aminobutyric acid in the goldfish retina. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2777–2781. doi: 10.1073/pnas.68.11.2777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Logan W. J., Snyder S. H. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature. 1971 Dec 3;234(5327):297–299. doi: 10.1038/234297b0. [DOI] [PubMed] [Google Scholar]
  24. Neal M. J., Iversen L. L. Autoradiographic localization of 3 H-GABA in rat retina. Nat New Biol. 1972 Feb 16;235(59):217–218. doi: 10.1038/newbio235217a0. [DOI] [PubMed] [Google Scholar]
  25. Neal M. J., Pickles H. G. Uptake of 14C glycine by spinal cord. Nature. 1969 May 17;222(5194):679–680. doi: 10.1038/222679a0. [DOI] [PubMed] [Google Scholar]
  26. Neal M. J., Starr M. S. Effect of inhibitors of -aminobutyrate aminotransferase on the accumulation of 3H- -aminobutyric acid by the retina. Br J Pharmacol. 1973 Mar;47(3):543–555. [PMC free article] [PubMed] [Google Scholar]
  27. Neal M. J. The uptake of [14C]glycine by slices of mammalian spinal cord. J Physiol. 1971 May;215(1):103–117. doi: 10.1113/jphysiol.1971.sp009460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Obata K., Ito M., Ochi R., Sato N. Pharmacological properties of the postsynaptic inhibition by Purkinje cell axons and the action of gamma-aminobutyric acid on deiters NEURONES. Exp Brain Res. 1967;4(1):43–57. doi: 10.1007/BF00235216. [DOI] [PubMed] [Google Scholar]
  29. Otsuka M., Iversen L. L., Hall Z. W., Kravitz E. A. Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1110–1115. doi: 10.1073/pnas.56.4.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SCHOLES N. W., ROBERTS E. PHARMACOLOGICAL STUDIES OF THE OPTIC SYSTEM OF THE CHICK: EFFECT OF GAMMA-AMINOBUTYRIC ACID AND PENTOBARBITAL. Biochem Pharmacol. 1964 Sep;13:1319–1329. doi: 10.1016/0006-2952(64)90232-1. [DOI] [PubMed] [Google Scholar]
  31. Starr M. S., Voaden M. J. The uptake of ( 14 C) -aminobutyric acid by the isolated retina of the rat. Vision Res. 1972 Apr;12(4):549–557. doi: 10.1016/0042-6989(72)90150-2. [DOI] [PubMed] [Google Scholar]
  32. Straschill M., Perwein J. The inhibition of retinal ganglion cells by catecholeamines and gamma-aminobutyric acid. Pflugers Arch. 1969;312(3):45–54. doi: 10.1007/BF00588530. [DOI] [PubMed] [Google Scholar]
  33. TSUKADA Y., NAGATA Y., HIRANO S., MATSUTANI T. Active transport of amino acid into cerebral cortex slices. J Neurochem. 1963 Apr;10:241–256. doi: 10.1111/j.1471-4159.1963.tb05040.x. [DOI] [PubMed] [Google Scholar]
  34. WEINSTEIN H., VARON S., MUHLEMAN D. R., ROBERTS E. A CARRIER-MEDIATED TRANSFER MODEL FOR THE ACCUMULATION OF 14-C-GAMMA-AMINOBUTYRIC ACID BY SUBCELLULAR BRAIN PARTICLES. Biochem Pharmacol. 1965 Mar;14:273–288. doi: 10.1016/0006-2952(65)90192-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES