Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(1):136–142. doi: 10.1128/jb.178.1.136-142.1996

Cloning, purification, and properties of a phosphotyrosine protein phosphatase from Streptomyces coelicolor A3(2).

Y Li 1, W R Strohl 1
PMCID: PMC177630  PMID: 8550407

Abstract

We describe the isolation and characterization of a gene (ptpA) from Streptomyces coelicolor A3(2) that codes for a protein with a deduced M(r) of 17,690 containing significant amino acid sequence identity with mammalian and prokaryotic small, acidic phosphotyrosine protein phosphatases (PTPases). After expression of S. coelicolor ptpA in Escherichia coli with a pT7-7-based vector system, PtpA was purified to homogeneity as a fusion protein containing five extra amino acids. The purified fusion enzyme catalyzed the removal of phosphate from p-nitrophenylphosphate (PNPP), phosphotyrosine (PY), and a commercial phosphopeptide containing a single phosphotyrosine residue but did not cleave phosphoserine or phosphothreonine. The pH optima for PNPP and PY hydrolysis by PtpA were 6.0 and 6.5, respectively. The Km values for hydrolysis of PNPP and PY by PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA were 0.75 mM (pH 6.0, 37 degrees C) and 2.7 mM (pH 6.5, 37 degrees C), respectively. Hydrolysis of PNPP by S. coelicolor PtpA was competitively inhibited by dephostatin with a Ki of 1.64 microM; the known PTPase inhibitors phenylarsine oxide, sodium vanadate, and iodoacetate also inhibited enzyme activity. Apparent homologs of ptpA were detected in other streptomycetes by Southern hybridization; the biological functions of PtpA and its putative homologs in streptomycetes are not yet known.

Full Text

The Full Text of this article is available as a PDF (325.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Baxter J. H., Suelter C. H. Resolution of the low-molecular-weight acid phosphatase in avian pectoral muscle into two distinct enzyme forms. Arch Biochem Biophys. 1985 May 15;239(1):29–37. doi: 10.1016/0003-9861(85)90808-2. [DOI] [PubMed] [Google Scholar]
  3. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  4. Bliska J. B., Guan K. L., Dixon J. E., Falkow S. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1187–1191. doi: 10.1073/pnas.88.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Bugert P., Geider K. Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol. 1995 Mar;15(5):917–933. doi: 10.1111/j.1365-2958.1995.tb02361.x. [DOI] [PubMed] [Google Scholar]
  7. Camici G., Manao G., Cappugi G., Modesti A., Stefani M., Ramponi G. The complete amino acid sequence of the low molecular weight cytosolic acid phosphatase. J Biol Chem. 1989 Feb 15;264(5):2560–2567. [PubMed] [Google Scholar]
  8. Chater K. F. Genetics of differentiation in Streptomyces. Annu Rev Microbiol. 1993;47:685–713. doi: 10.1146/annurev.mi.47.100193.003345. [DOI] [PubMed] [Google Scholar]
  9. Chernoff J., Li H. C. A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase. Arch Biochem Biophys. 1985 Jul;240(1):135–145. doi: 10.1016/0003-9861(85)90016-5. [DOI] [PubMed] [Google Scholar]
  10. Cirri P., Chiarugi P., Camici G., Manao G., Pazzagli L., Caselli A., Barghini I., Cappugi G., Raugei G., Ramponi G. The role of Cys-17 in the pyridoxal 5'-phosphate inhibition of the bovine liver low M(r) phosphotyrosine protein phosphatase. Biochim Biophys Acta. 1993 Feb 13;1161(2-3):216–222. doi: 10.1016/0167-4838(93)90216-e. [DOI] [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dissing J., Johnsen A. H. Human red cell acid phosphatase (ACP1): the primary structure of the two pairs of isozymes encoded by the ACP1*A and ACP1*C alleles. Biochim Biophys Acta. 1992 Jun 24;1121(3):261–268. doi: 10.1016/0167-4838(92)90155-7. [DOI] [PubMed] [Google Scholar]
  13. Dobrová Z., Jiresová M., Petrík T., Rysavý P., Náprstek J., Janecek J. Protein phosphorylation in Streptomyces albus. FEMS Microbiol Lett. 1990 Sep 1;59(1-2):145–148. doi: 10.1016/0378-1097(90)90047-t. [DOI] [PubMed] [Google Scholar]
  14. Duchange N., Zakin M. M., Ferrara P., Saint-Girons I., Park I., Tran S. V., Py M. C., Cohen G. N. Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5'- and 3'-flanking regions of the metBL operon. J Biol Chem. 1983 Dec 25;258(24):14868–14871. [PubMed] [Google Scholar]
  15. Garcia-Morales P., Minami Y., Luong E., Klausner R. D., Samelson L. E. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9255–9259. doi: 10.1073/pnas.87.23.9255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gordon J. A. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol. 1991;201:477–482. doi: 10.1016/0076-6879(91)01043-2. [DOI] [PubMed] [Google Scholar]
  17. Gramajo H. C., White J., Hutchinson C. R., Bibb M. J. Overproduction and localization of components of the polyketide synthase of Streptomyces glaucescens involved in the production of the antibiotic tetracenomycin C. J Bacteriol. 1991 Oct;173(20):6475–6483. doi: 10.1128/jb.173.20.6475-6483.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Guan K. L., Broyles S. S., Dixon J. E. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature. 1991 Mar 28;350(6316):359–362. doi: 10.1038/350359a0. [DOI] [PubMed] [Google Scholar]
  19. Guan K. L., Dixon J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science. 1990 Aug 3;249(4968):553–556. doi: 10.1126/science.2166336. [DOI] [PubMed] [Google Scholar]
  20. Harder K. W., Owen P., Wong L. K., Aebersold R., Clark-Lewis I., Jirik F. R. Characterization and kinetic analysis of the intracellular domain of human protein tyrosine phosphatase beta (HPTP beta) using synthetic phosphopeptides. Biochem J. 1994 Mar 1;298(Pt 2):395–401. doi: 10.1042/bj2980395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heinrikson R. L. Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem. 1969 Jan 25;244(2):299–307. [PubMed] [Google Scholar]
  22. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  23. Imoto M., Kakeya H., Sawa T., Hayashi C., Hamada M., Takeuchi T., Umezawa K. Dephostatin, a novel protein tyrosine phosphatase inhibitor produced by Streptomyces. I. Taxonomy, isolation, and characterization. J Antibiot (Tokyo) 1993 Sep;46(9):1342–1346. doi: 10.7164/antibiotics.46.1342. [DOI] [PubMed] [Google Scholar]
  24. Ji G., Silver S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol. 1992 Jun;174(11):3684–3694. doi: 10.1128/jb.174.11.3684-3694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kieser H. M., Kieser T., Hopwood D. A. A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J Bacteriol. 1992 Sep;174(17):5496–5507. doi: 10.1128/jb.174.17.5496-5507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lampel J. S., Aphale J. S., Lampel K. A., Strohl W. R. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J Bacteriol. 1992 May;174(9):2797–2808. doi: 10.1128/jb.174.9.2797-2808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Manao G., Pazzagli L., Cirri P., Caselli A., Camici G., Cappugi G., Saeed A., Ramponi G. Rat liver low M(r) phosphotyrosine protein phosphatase isoenzymes: purification and amino acid sequences. J Protein Chem. 1992 Jun;11(3):333–345. doi: 10.1007/BF01024871. [DOI] [PubMed] [Google Scholar]
  29. Matsumoto A., Hong S. K., Ishizuka H., Horinouchi S., Beppu T. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene. 1994 Aug 19;146(1):47–56. doi: 10.1016/0378-1119(94)90832-x. [DOI] [PubMed] [Google Scholar]
  30. Mondesert O., Moreno S., Russell P. Low molecular weight protein-tyrosine phosphatases are highly conserved between fission yeast and man. J Biol Chem. 1994 Nov 11;269(45):27996–27999. [PubMed] [Google Scholar]
  31. Mustelin T., Coggeshall K. M., Altman A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6302–6306. doi: 10.1073/pnas.86.16.6302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nedelec J. F., Alfsen A., Lavialle F. Comparative study of myelin proteolipid apoprotein solvation by multilayer membranes of synthetic DPPC and biological lipid extract from bovine brain. An FT-IR investigation. Biochimie. 1989 Jan;71(1):145–151. doi: 10.1016/0300-9084(89)90144-2. [DOI] [PubMed] [Google Scholar]
  33. Ono B., Tanaka K., Naito K., Heike C., Shinoda S., Yamamoto S., Ohmori S., Oshima T., Toh-e A. Cloning and characterization of the CYS3 (CYI1) gene of Saccharomyces cerevisiae. J Bacteriol. 1992 May;174(10):3339–3347. doi: 10.1128/jb.174.10.3339-3347.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Potts M., Sun H., Mockaitis K., Kennelly P. J., Reed D., Tonks N. K. A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc commune UTEX 584. J Biol Chem. 1993 Apr 15;268(11):7632–7635. [PubMed] [Google Scholar]
  35. Pradel E., Boquet P. L. Acid phosphatases of Escherichia coli: molecular cloning and analysis of agp, the structural gene for a periplasmic acid glucose phosphatase. J Bacteriol. 1988 Oct;170(10):4916–4923. doi: 10.1128/jb.170.10.4916-4923.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Russel M., Model P. Replacement of the fip gene of Escherichia coli by an inactive gene cloned on a plasmid. J Bacteriol. 1984 Sep;159(3):1034–1039. doi: 10.1128/jb.159.3.1034-1039.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shekels L. L., Smith A. J., Van Etten R. L., Bernlohr D. A. Identification of the adipocyte acid phosphatase as a PAO-sensitive tyrosyl phosphatase. Protein Sci. 1992 Jun;1(6):710–721. doi: 10.1002/pro.5560010603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Strohl W. R., Bartel P. L., Li Y., Connors N. C., Woodman R. H. Expression of polyketide biosynthesis and regulatory genes in heterologous streptomycetes. J Ind Microbiol. 1991 Apr;7(3):163–174. doi: 10.1007/BF01575879. [DOI] [PubMed] [Google Scholar]
  40. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Waheed A., Laidler P. M., Wo Y. Y., Van Etten R. L. Purification and physicochemical characterization of a human placental acid phosphatase possessing phosphotyrosyl protein phosphatase activity. Biochemistry. 1988 Jun 14;27(12):4265–4273. doi: 10.1021/bi00412a010. [DOI] [PubMed] [Google Scholar]
  43. Wilbanks S. M., Glazer A. N. Rod structure of a phycoerythrin II-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020. J Biol Chem. 1993 Jan 15;268(2):1226–1235. [PubMed] [Google Scholar]
  44. Wo Y. Y., McCormack A. L., Shabanowitz J., Hunt D. F., Davis J. P., Mitchell G. L., Van Etten R. L. Sequencing, cloning, and expression of human red cell-type acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase. J Biol Chem. 1992 May 25;267(15):10856–10865. [PubMed] [Google Scholar]
  45. Wo Y. Y., Zhou M. M., Stevis P., Davis J. P., Zhang Z. Y., Van Etten R. L. Cloning, expression, and catalytic mechanism of the low molecular weight phosphotyrosyl protein phosphatase from bovine heart. Biochemistry. 1992 Feb 18;31(6):1712–1721. doi: 10.1021/bi00121a019. [DOI] [PubMed] [Google Scholar]
  46. Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]
  47. Zhang M., Van Etten R. L., Stauffacher C. V. Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2-A resolution. Biochemistry. 1994 Sep 20;33(37):11097–11105. doi: 10.1021/bi00203a006. [DOI] [PubMed] [Google Scholar]
  48. Zhang Z. Y., Davis J. P., Van Etten R. L. Covalent modification and active site-directed inactivation of a low molecular weight phosphotyrosyl protein phosphatase. Biochemistry. 1992 Feb 18;31(6):1701–1711. doi: 10.1021/bi00121a018. [DOI] [PubMed] [Google Scholar]
  49. Zhang Z. Y., Van Etten R. L. Purification and characterization of a low-molecular-weight acid phosphatase--a phosphotyrosyl-protein phosphatase from bovine heart. Arch Biochem Biophys. 1990 Oct;282(1):39–49. doi: 10.1016/0003-9861(90)90084-c. [DOI] [PubMed] [Google Scholar]
  50. Zhang Z., Harms E., Van Etten R. L. Asp129 of low molecular weight protein tyrosine phosphatase is involved in leaving group protonation. J Biol Chem. 1994 Oct 21;269(42):25947–25950. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES