Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(1):143–148. doi: 10.1128/jb.178.1.143-148.1996

Cloning, functional organization, transcript studies, and phylogenetic analysis of the complete nitrogenase structural genes (nifHDK2) and associated genes in the archaeon Methanosarcina barkeri 227.

Y T Chien 1, S H Zinder 1
PMCID: PMC177631  PMID: 8550408

Abstract

Determination of the nucleotide sequence of the nitrogenase structural genes (nifHDK2) from Methanosarcina barkeri 227 was completed in this study by cloning and sequencing a 2.7-kb BamHI fragment containing the 3' end of nifK2 and 1,390 bp of the nifE2-homologous genes. Open reading frame nifK2 is 1,371 bp long including the stop codon TAA and encodes a polypeptide of 456 amino acids. Phylogenetic analysis of the deduced amino acid sequences of the nifK2 and nifE2 gene products from M. barkeri showed that both genes cluster most closely with the corresponding nif-1 gene products from Clostridium pasteurianum, consistent with our previous analyses of nifH2 and nifD2. The nifE gene product is known to be homologous to that of nifD, and our analysis shows that the branching pattern for the nifE proteins resembles that for the nifD product (with the exception of vnfE from Azotobacter vinelandii), suggesting that a gene duplication occurred before the divergence of nitrogenases. Primer extension showed that nifH2 had a single transcription start site located 34 nucleotides upstream of the ATG translation start site for nifH2, and a sequence resembling the archaeal consensus promoter sequence [TTTA(A/T)ATA] was found 32 nucleotides upstream from that transcription start site. A tract of four T's, previously identified as a transcription termination site in archaea, was found immediately downstream of the nifK2 gene, and a potential promoter was located upstream of the nifE2 gene. Hybridization with nifH2 and nifDK2 probes with M. barkeri RNA revealed a 4.6-kb transcript from N2-grown cells, large enough to harbor nifHDK genes and their internal open reading frames, while no transcript was detected from NH4(+)-grown cells. These results support a model in which the nitrogenase structural genes in M. barkeri are cotranscribed in a single NH4(+)-repressed operon.

Full Text

The Full Text of this article is available as a PDF (296.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bröckl G., Behr M., Fabry S., Hensel R., Kaudewitz H., Biendl E., König H. Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. Eur J Biochem. 1991 Jul 1;199(1):147–152. doi: 10.1111/j.1432-1033.1991.tb16102.x. [DOI] [PubMed] [Google Scholar]
  2. Burke D. H., Hearst J. E., Sidow A. Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7134–7138. doi: 10.1073/pnas.90.15.7134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chien Y. T., Zinder S. H. Cloning, DNA sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum. J Bacteriol. 1994 Nov;176(21):6590–6598. doi: 10.1128/jb.176.21.6590-6598.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dean D. R., Bolin J. T., Zheng L. Nitrogenase metalloclusters: structures, organization, and synthesis. J Bacteriol. 1993 Nov;175(21):6737–6744. doi: 10.1128/jb.175.21.6737-6744.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gohl H. P., Hausner W., Thomm M. Cell-free transcription of the nifH1 gene of Methanococcus thermolithotrophicus indicates that promoters of archaeal nif genes share basic features with the methanogen consensus promoter. Mol Gen Genet. 1992 Jan;231(2):286–295. doi: 10.1007/BF00279802. [DOI] [PubMed] [Google Scholar]
  6. Haas E. S., Daniels C. J., Reeve J. N. Genes encoding 5S rRNA and tRNAs in the extremely thermophilic archaebacterium Methanothermus fervidus. Gene. 1989 Apr 30;77(2):253–263. doi: 10.1016/0378-1119(89)90073-5. [DOI] [PubMed] [Google Scholar]
  7. Hennigan A. N., Reeve J. N. mRNAs in the methanogenic archaeon Methanococcus vannielii: numbers, half-lives and processing. Mol Microbiol. 1994 Feb;11(4):655–670. doi: 10.1111/j.1365-2958.1994.tb00344.x. [DOI] [PubMed] [Google Scholar]
  8. Higgins D. G., Sharp P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15;73(1):237–244. doi: 10.1016/0378-1119(88)90330-7. [DOI] [PubMed] [Google Scholar]
  9. Hirsch A. M., McKhann H. I., Reddy A., Liao J., Fang Y., Marshall C. R. Assessing horizontal transfer of nifHDK genes in eubacteria: nucleotide sequence of nifK from Frankia strain HFPCcI3. Mol Biol Evol. 1995 Jan;12(1):16–27. doi: 10.1093/oxfordjournals.molbev.a040184. [DOI] [PubMed] [Google Scholar]
  10. Jarrell K. F., Faguy D., Hebert A. M., Kalmokoff M. L. A general method of isolating high molecular weight DNA from methanogenic archaea (archaebacteria). Can J Microbiol. 1992 Jan;38(1):65–68. doi: 10.1139/m92-010. [DOI] [PubMed] [Google Scholar]
  11. Lobo A. L., Zinder S. H. Nitrogenase in the archaebacterium Methanosarcina barkeri 227. J Bacteriol. 1990 Dec;172(12):6789–6796. doi: 10.1128/jb.172.12.6789-6796.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Normand P., Bousquet J. Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol. 1989 Nov;29(5):436–447. doi: 10.1007/BF02602914. [DOI] [PubMed] [Google Scholar]
  13. Normand P., Gouy M., Cournoyer B., Simonet P. Nucleotide sequence of nifD from Frankia alni strain ArI3: phylogenetic inferences. Mol Biol Evol. 1992 May;9(3):495–506. doi: 10.1093/oxfordjournals.molbev.a040737. [DOI] [PubMed] [Google Scholar]
  14. Palmer J. R., Daniels C. J. In vivo definition of an archaeal promoter. J Bacteriol. 1995 Apr;177(7):1844–1849. doi: 10.1128/jb.177.7.1844-1849.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reeve J. N. Molecular biology of methanogens. Annu Rev Microbiol. 1992;46:165–191. doi: 10.1146/annurev.mi.46.100192.001121. [DOI] [PubMed] [Google Scholar]
  16. Robson R. L., Woodley P. R., Pau R. N., Eady R. R. Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. EMBO J. 1989 Apr;8(4):1217–1224. doi: 10.1002/j.1460-2075.1989.tb03495.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sanger F. Determination of nucleotide sequences in DNA. Science. 1981 Dec 11;214(4526):1205–1210. doi: 10.1126/science.7302589. [DOI] [PubMed] [Google Scholar]
  18. Sibold L., Henriquet M., Possot O., Aubert J. P. Nucleotide sequence of nifH regions from Methanobacterium ivanovii and Methanosarcina barkeri 227 and characterization of glnB-like genes. Res Microbiol. 1991 Jan;142(1):5–12. doi: 10.1016/0923-2508(91)90091-n. [DOI] [PubMed] [Google Scholar]
  19. Singh-Wissmann K., Ferry J. G. Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila. J Bacteriol. 1995 Apr;177(7):1699–1702. doi: 10.1128/jb.177.7.1699-1702.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Souillard N., Sibold L. Primary structure, functional organization and expression of nitrogenase structural genes of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Mol Microbiol. 1989 Apr;3(4):541–551. doi: 10.1111/j.1365-2958.1989.tb00200.x. [DOI] [PubMed] [Google Scholar]
  21. Sowers K. R., Thai T. T., Gunsalus R. P. Transcriptional regulation of the carbon monoxide dehydrogenase gene (cdhA) in Methanosarcina thermophila. J Biol Chem. 1993 Nov 5;268(31):23172–23178. [PubMed] [Google Scholar]
  22. Stolt P., Zillig W. Structure specific ds/ss-RNase activity in the extreme halophile Halobacterium salinarium. Nucleic Acids Res. 1993 Dec 11;21(24):5595–5599. doi: 10.1093/nar/21.24.5595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ueda T., Suga Y., Yahiro N., Matsuguchi T. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol. 1995 Mar;177(5):1414–1417. doi: 10.1128/jb.177.5.1414-1417.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zillig W., Palm P., Reiter W. D., Gropp F., Pühler G., Klenk H. P. Comparative evaluation of gene expression in archaebacteria. Eur J Biochem. 1988 May 2;173(3):473–482. doi: 10.1111/j.1432-1033.1988.tb14023.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES