Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(1):273–279. doi: 10.1128/jb.178.1.273-279.1996

Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.

V Balasubramanian 1, M S Pavelka Jr 1, S S Bardarov 1, J Martin 1, T R Weisbrod 1, R A McAdam 1, B R Bloom 1, W R Jacobs Jr 1
PMCID: PMC177649  PMID: 8550428

Abstract

Genetic studies of Mycobacterium tuberculosis have been greatly hampered by the inability to introduce specific chromosomal mutations. Whereas the ability to perform allelic exchanges has provided a useful method of gene disruption in other organisms, in the clinically important species of mycobacteria, such as M. tuberculosis and Mycobacterium bovis, similar approaches have thus far been unsuccessful. In this communication, we report the development of a shuttle mutagenesis strategy that involves the use of long linear recombination substrates to reproducibly obtain recombinants by allelic exchange in M. tuberculosis. Long linear recombination substrates, approximately 40 to 50 kb in length, were generated by constructing libraries in the excisable cosmid vector pYUB328. The cosmid vector could be readily excised from the recombinant cosmids by digestion with PacI, a restriction endonuclease for which there exist few, if any, sites in mycobacterial genomes. A cosmid containing the mycobacterial leuD gene was isolated, and a selectable marker conferring resistance to kanamycin was inserted into the leuD gene in the recombinant cosmid by interplasmid recombination in Escherichia coli. A long linear recombination substrate containing the insertionally mutated leuD gene was generated by PacI digestion. Electroporation of this recombination substrate containing the insertionally mutated leuD allele resulted in the generation of leucine auxotrophic mutants by homologous recombination in 6% of the kanamycin-resistant transformants for both the Erdman and H37Rv strains of M. tuberculosis. The ability to perform allelic exchanges provides an important approach for investigating the biology of this pathogen as well as developing new live-cell M. tuberculosis-based vaccines.

Full Text

The Full Text of this article is available as a PDF (330.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldovini A., Husson R. N., Young R. A. The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol. 1993 Nov;175(22):7282–7289. doi: 10.1128/jb.175.22.7282-7289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  3. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  4. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  5. Collins D. M., Kawakami R. P., de Lisle G. W., Pascopella L., Bloom B. R., Jacobs W. R., Jr Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8036–8040. doi: 10.1073/pnas.92.17.8036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colston M. J. BCG. Rebirth of a star performer. Nature. 1991 Jun 6;351(6326):442–443. doi: 10.1038/351442d0. [DOI] [PubMed] [Google Scholar]
  7. Donnenberg M. S., Kaper J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 1991 Dec;59(12):4310–4317. doi: 10.1128/iai.59.12.4310-4317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guilhot C., Otal I., Van Rompaey I., Martìn C., Gicquel B. Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol. 1994 Jan;176(2):535–539. doi: 10.1128/jb.176.2.535-539.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  10. Husson R. N., James B. E., Young R. A. Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol. 1990 Feb;172(2):519–524. doi: 10.1128/jb.172.2.519-524.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobs W. R., Barrett J. F., Clark-Curtiss J. E., Curtiss R., 3rd In vivo repackaging of recombinant cosmid molecules for analyses of Salmonella typhimurium, Streptococcus mutans, and mycobacterial genomic libraries. Infect Immun. 1986 Apr;52(1):101–109. doi: 10.1128/iai.52.1.101-109.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobs W. R., Jr, Barletta R. G., Udani R., Chan J., Kalkut G., Sosne G., Kieser T., Sarkis G. J., Hatfull G. F., Bloom B. R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science. 1993 May 7;260(5109):819–822. doi: 10.1126/science.8484123. [DOI] [PubMed] [Google Scholar]
  13. Jacobs W. R., Jr, Kalpana G. V., Cirillo J. D., Pascopella L., Snapper S. B., Udani R. A., Jones W., Barletta R. G., Bloom B. R. Genetic systems for mycobacteria. Methods Enzymol. 1991;204:537–555. doi: 10.1016/0076-6879(91)04027-l. [DOI] [PubMed] [Google Scholar]
  14. Jacobs W. R., Jr, Tuckman M., Bloom B. R. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature. 1987 Jun 11;327(6122):532–535. doi: 10.1038/327532a0. [DOI] [PubMed] [Google Scholar]
  15. Kalpana G. V., Bloom B. R., Jacobs W. R., Jr Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5433–5437. doi: 10.1073/pnas.88.12.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee M. H., Pascopella L., Jacobs W. R., Jr, Hatfull G. F. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111–3115. doi: 10.1073/pnas.88.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindenmaier W., Hauser H., de Wilke I. G., Schütz G. Gene shuttling: moving of cloned DNA into and out of eukaryotic cells. Nucleic Acids Res. 1982 Feb 25;10(4):1243–1256. doi: 10.1093/nar/10.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin C., Timm J., Rauzier J., Gomez-Lus R., Davies J., Gicquel B. Transposition of an antibiotic resistance element in mycobacteria. Nature. 1990 Jun 21;345(6277):739–743. doi: 10.1038/345739a0. [DOI] [PubMed] [Google Scholar]
  19. McAdam R. A., Weisbrod T. R., Martin J., Scuderi J. D., Brown A. M., Cirillo J. D., Bloom B. R., Jacobs W. R., Jr In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun. 1995 Mar;63(3):1004–1012. doi: 10.1128/iai.63.3.1004-1012.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miller V. L., Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun;170(6):2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mizuguchi Y., Tokunaga T. Method for isolation of deoxyribonucleic acid from mycobacteria. J Bacteriol. 1970 Nov;104(2):1020–1021. doi: 10.1128/jb.104.2.1020-1021.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Myers R. S., Stahl F. W. Chi and the RecBC D enzyme of Escherichia coli. Annu Rev Genet. 1994;28:49–70. doi: 10.1146/annurev.ge.28.120194.000405. [DOI] [PubMed] [Google Scholar]
  23. Norman E., Dellagostin O. A., McFadden J., Dale J. W. Gene replacement by homologous recombination in Mycobacterium bovis BCG. Mol Microbiol. 1995 May;16(4):755–760. doi: 10.1111/j.1365-2958.1995.tb02436.x. [DOI] [PubMed] [Google Scholar]
  24. Pascopella L., Collins F. M., Martin J. M., Lee M. H., Hatfull G. F., Stover C. K., Bloom B. R., Jacobs W. R., Jr Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun. 1994 Apr;62(4):1313–1319. doi: 10.1128/iai.62.4.1313-1319.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raj C. V., Ramakrishnan T. Transduction in Mycobacterium smegmatis. Nature. 1970 Oct 17;228(5268):280–281. doi: 10.1038/228280b0. [DOI] [PubMed] [Google Scholar]
  26. Snapper S. B., Lugosi L., Jekkel A., Melton R. E., Kieser T., Bloom B. R., Jacobs W. R., Jr Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6987–6991. doi: 10.1073/pnas.85.18.6987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F. New use of BCG for recombinant vaccines. Nature. 1991 Jun 6;351(6326):456–460. doi: 10.1038/351456a0. [DOI] [PubMed] [Google Scholar]
  28. Tokunaga T., Mizuguchi Y., Suga K. Genetic recombination in mycobacteria. J Bacteriol. 1973 Mar;113(3):1104–1111. doi: 10.1128/jb.113.3.1104-1111.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wahl G. M., Lewis K. A., Ruiz J. C., Rothenberg B., Zhao J., Evans G. A. Cosmid vectors for rapid genomic walking, restriction mapping, and gene transfer. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2160–2164. doi: 10.1073/pnas.84.8.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
  31. de Lorenzo V., Timmis K. N. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 1994;235:386–405. doi: 10.1016/0076-6879(94)35157-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES