Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1973 Nov;49(3):400–406. doi: 10.1111/j.1476-5381.1973.tb17250.x

Interaction of (+)-amphetamine with cerebral dopaminergic neurones in two strains of mice, that show different temperature responses to this drug

S Caccia, G Cecchetti, S Garattini, A Jori
PMCID: PMC1776496  PMID: 4777703

Abstract

1. (+)-Amphetamine sulphate elicits a dose-dependent hyperthermia in NMRI mice but it does not significantly increase the body temperature of C3H mice.

2. When low doses of (+)-amphetamine are given, the body temperature of C3H mice decreases.

3. (+)-Amphetamine decreases the noradrenaline concentration in the brain-stem and increases the homovanillic acid concentration (HVA) in the striatum of NMRI mice, but only slightly reduces the noradrenaline concentration and does not change the HVA concentration in the brains of C3H mice.

4. The two strains appear to show a difference in the metabolism of dopamine in the striatum. The rates at which dopamine disappears from the tissue after blocking catecholamine synthesis with α-methyltyrosine and the rates at which HVA accumulates after blocking the active transport of this metabolite out of the brain with probenecid suggest that the turnover of dopamine is lower in C3H mice than in NMRI mice.

Full text

PDF
400

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andén N. E., Butcher S. G., Corrodi H., Fuxe K., Ungerstedt U. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol. 1970;11(3):303–314. doi: 10.1016/0014-2999(70)90006-3. [DOI] [PubMed] [Google Scholar]
  2. BROWN A. M. PHARMACOGENETICS OF THE MOUSE. Lab Anim Care. 1965 Apr;15:111–118. [PubMed] [Google Scholar]
  3. Brodie B. B., Costa E., Dlabac A., Neff N. H., Smookler H. H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther. 1966 Dec;154(3):493–498. [PubMed] [Google Scholar]
  4. Brown A. M., Julian T. The body temperature response of two inbred strains of mice to handling, saline and amphetamine. Int J Neuropharmacol. 1968 Nov;7(6):531–541. doi: 10.1016/0028-3908(68)90065-8. [DOI] [PubMed] [Google Scholar]
  5. Dolfini E., Garattini S., Valzelli L. Activity of (+)-amphetamine at different environmental temperatures in three strains of mice. J Pharm Pharmacol. 1969 Dec;21(12):871–872. doi: 10.1111/j.2042-7158.1969.tb08194.x. [DOI] [PubMed] [Google Scholar]
  6. Dolfini E., Ramirez del Angel A., Garattini S., Valzelli L. Brain catecholamine release by dexamphetamine in three strains of mice. Eur J Pharmacol. 1970 Mar;9(3):333–336. doi: 10.1016/0014-2999(70)90231-1. [DOI] [PubMed] [Google Scholar]
  7. FELDBERG W., MYERS R. D. A NEW CONCEPT OF TEMPERATURE REGULATION BY AMINES IN THE HYPOTHALAMUS. Nature. 1963 Dec 28;200:1325–1325. doi: 10.1038/2001325a0. [DOI] [PubMed] [Google Scholar]
  8. Gessa G. L., Clay G. A., Brodie B. B. Evidence that hyperthermia produced by d-amphetamine is caused by a peripheral action of the drug. Life Sci. 1969 Feb 1;8(3):135–141. doi: 10.1016/0024-3205(69)90086-1. [DOI] [PubMed] [Google Scholar]
  9. Giacalone E., Valzelli L. A spectrofluorometric method for the simultaneous determination of 2-(5-hydroxyindol-3-yl) ethylamine (serotonin) and 5-hydroxyindol-3-yl-acetic acid in the brain. Pharmacology. 1969;2(3):171–175. doi: 10.1159/000136013. [DOI] [PubMed] [Google Scholar]
  10. Hill H. F., Horita A. Inhibition of (+)-amphetamine hyperthermia by blockade of dopamine receptors in rabbits. J Pharm Pharmacol. 1971 Sep;23(9):715–717. doi: 10.1111/j.2042-7158.1971.tb08755.x. [DOI] [PubMed] [Google Scholar]
  11. Javoy F., Hamon M., Glowinski J. Disposition of newly synthesized amines in cell bodies and terminals of central catechol aminergic neurons. I. Effect of amphetamine and thiorproperazine on the metabolism of CA in the caudate nucleus, the substantia nigra and the ventromedial nucleus of the hypothalamus. Eur J Pharmacol. 1970 May;10(2):178–188. doi: 10.1016/0014-2999(70)90271-2. [DOI] [PubMed] [Google Scholar]
  12. Jellinek P. Dual effect of dexamphetamine on body temperature in the rat. Eur J Pharmacol. 1971;15(3):389–392. doi: 10.1016/0014-2999(71)90111-7. [DOI] [PubMed] [Google Scholar]
  13. Jori A., Bernardi D. Effect of amphetamine and amphetamine-like drugs on homovanillic acid concentration in the brain. J Pharm Pharmacol. 1969 Oct;21(10):694–697. doi: 10.1111/j.2042-7158.1969.tb08150.x. [DOI] [PubMed] [Google Scholar]
  14. Jori A., Bernardi D. Further studies on the increase of striatal homovanillic acid induced by amphetamine and fenfluramine. Eur J Pharmacol. 1972 Aug;19(2):276–280. doi: 10.1016/0014-2999(72)90020-9. [DOI] [PubMed] [Google Scholar]
  15. Korf J., Ottema S., van der Veen I. Fluorometric determination of homovanillic acid in biological material after isolation on Sephadex G-10. Anal Biochem. 1971 Mar;40(1):187–191. doi: 10.1016/0003-2697(71)90091-1. [DOI] [PubMed] [Google Scholar]
  16. Matsumoto C., Griffin W. Antagonism of (+)-amphetamine-induced hyperthermia in rats by pimozide. J Pharm Pharmacol. 1971 Sep;23(9):710–710. doi: 10.1111/j.2042-7158.1971.tb08751.x. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto C., Shaw W. N. The involvement of plasma free fatty acids in (+)-amphetamine-induced hyperthermia in rats. J Pharm Pharmacol. 1971 May;23(5):387–388. doi: 10.1111/j.2042-7158.1971.tb09937.x. [DOI] [PubMed] [Google Scholar]
  18. McCullough D. O., Milberg J. N., Robinson S. M. A cntral site for the hypothermic effects of (+)-amphetamine sulphate and p-hydroxyamphetamine hydrobromide in mice. Br J Pharmacol. 1970 Oct;40(2):219–226. doi: 10.1111/j.1476-5381.1970.tb09915.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SHORE P. A., OLIN J. S. Identification and chemical assay of norepinephrine in brain and other tissues. J Pharmacol Exp Ther. 1958 Mar;122(3):295–300. [PubMed] [Google Scholar]
  20. WEAVER L. C., KERLEY T. L. Strain difference in response of mice to d-amphetamine. J Pharmacol Exp Ther. 1962 Feb;135:240–244. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES