Abstract
The peptidoglycan layer surrounding the photosynthetic organelles (cyanelles) of the protist Cyanophora paradoxa is thought to be a relic of their cyanobacterial ancestors. The separation of muropeptides by gel filtration and reverse-phase high-performance liquid chromatography revealed four different muropeptide monomers. A number of muropeptides were identical in retention behavior to muropeptides of Escherichia coli, while others had remarkably long retention times with respect to their sizes, as indicated by gel filtration. Molecular mass determination by plasma desorption and matrix-assisted laser desorption ionization mass spectrometry showed that these unusual muropeptides had molecular masses greater by 112 Da or a multiple thereof than those of ones common to both species. Fast atom bombardment-tandem mass spectrometry of these reduced muropeptide monomers allowed the localization of the modification to D-glutamic acid. High-resolution fast atom bombardment-mass spectrometry and amino acid analysis revealed N-acetylputrescine to be the substituent (E. Pittenauer, E. R. Schmid, G. Allmaier, B. Pfanzagl, W. Löffelhardt, C. Quintela, M. A. de Pedro, and W. Stanek, Biol. Mass Spectrom. 22:524-536, 1993). In addition to the 4 monomers already known, 8 dimers, 11 trimers, and 6 tetramers were characterized. An average glycan chain length of 51 disaccharide units was determined by the transfer of [U-14C]galactose to the terminal N-acetylglucosamine residues of cyanelle peptidoglycan. The muropeptide pattern is discussed with respect to peptidoglycan biosynthesis and processing.
Full Text
The Full Text of this article is available as a PDF (286.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhattacharya D., Helmchen T., Bibeau C., Melkonian M. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol Biol Evol. 1995 May;12(3):415–420. doi: 10.1093/oxfordjournals.molbev.a040216. [DOI] [PubMed] [Google Scholar]
- Bohnert H. J., Crouse E. J., Pouyet J., Mucke H., Löffelhardt W. The subcellular localization of DNA components from Cyanophora paradoxa, a flagellate containing endosymbiotic cyanelles. Eur J Biochem. 1982 Aug;126(2):381–388. doi: 10.1111/j.1432-1033.1982.tb06791.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Breiteneder H., Seiser C., Löffelhardt W., Michalowski C., Bohnert H. J. Physical map and protein gene map of cyanelle DNA from the second known isolate of Cyanophora paradoxa (Kies-strain). Curr Genet. 1988 Mar;13(3):199–206. doi: 10.1007/BF00387765. [DOI] [PubMed] [Google Scholar]
- Caparrós M., Pisabarro A. G., de Pedro M. A. Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. J Bacteriol. 1992 Sep;174(17):5549–5559. doi: 10.1128/jb.174.17.5549-5559.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caparrós M., Pittenauer E., Schmid E. R., de Pedro M. A., Allmaier G. Molecular weight-determination of biosynthetically modified monomeric and oligomeric muropeptides from Escherichia coli by plasma desorption-mass spectrometry. FEBS Lett. 1993 Jan 25;316(2):181–185. doi: 10.1016/0014-5793(93)81211-h. [DOI] [PubMed] [Google Scholar]
- Chang J. Y., Knecht R., Braun D. G. Amino acid analysis in the picomole range by precolumn derivatization and high-performance liquid chromatography. Methods Enzymol. 1983;91:41–48. doi: 10.1016/s0076-6879(83)91009-1. [DOI] [PubMed] [Google Scholar]
- Giddings T. H., Wasmann C., Staehelin L. A. Structure of the Thylakoids and Envelope Membranes of the Cyanelles of Cyanophora paradoxa. Plant Physiol. 1983 Feb;71(2):409–419. doi: 10.1104/pp.71.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glauner B., Höltje J. V., Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem. 1988 Jul 25;263(21):10088–10095. [PubMed] [Google Scholar]
- Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):451–464. doi: 10.1016/0003-2697(88)90468-x. [DOI] [PubMed] [Google Scholar]
- Harz H., Burgdorf K., Höltje J. V. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem. 1990 Oct;190(1):120–128. doi: 10.1016/0003-2697(90)90144-x. [DOI] [PubMed] [Google Scholar]
- Hash J. H., Rothlauf M. V. The N,O-diacetylmuramidase of Chalaropsis species. I. Purification and crystallization. J Biol Chem. 1967 Dec 10;242(23):5586–5590. [PubMed] [Google Scholar]
- Höltje J. V., Mirelman D., Sharon N., Schwarz U. Novel type of murein transglycosylase in Escherichia coli. J Bacteriol. 1975 Dec;124(3):1067–1076. doi: 10.1128/jb.124.3.1067-1076.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jürgens U. J., Drews G., Weckesser J. Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J Bacteriol. 1983 Apr;154(1):471–478. doi: 10.1128/jb.154.1.471-478.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jürgens U. J., Weckesser J. Polysaccharide covalently linked to the peptidoglycan of the cyanobacterium Synechocystis sp. strain PCC6714. J Bacteriol. 1986 Nov;168(2):568–573. doi: 10.1128/jb.168.2.568-573.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamio Y., Itoh Y., Terawaki Y. Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic acid residue of peptidoglycan. J Bacteriol. 1981 Apr;146(1):49–53. doi: 10.1128/jb.146.1.49-53.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamio Y., Itoh Y., Terawaki Y., Kusano T. Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. J Bacteriol. 1981 Jan;145(1):122–128. doi: 10.1128/jb.145.1.122-128.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamio Y., Nakamura K. Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J Bacteriol. 1987 Jun;169(6):2881–2884. doi: 10.1128/jb.169.6.2881-2884.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamio Y., Pösö H., Terawaki Y., Paulin L. Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. J Biol Chem. 1986 May 15;261(14):6585–6589. [PubMed] [Google Scholar]
- Kamio Y. Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J Bacteriol. 1987 Oct;169(10):4837–4840. doi: 10.1128/jb.169.10.4837-4840.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamio Y., Terawaki Y., Izaki K. Biosynthesis of cadaverine-containing peptidoglycan in Selenomonas ruminantium. J Biol Chem. 1982 Mar 25;257(6):3326–3333. [PubMed] [Google Scholar]
- Mucke H., Löffelhardt W., Bohnert H. J. Partial characterization of the genome of the 'endosymbiotic' cyanelles from Cyanophora paradoxa. FEBS Lett. 1980 Mar 10;111(2):347–352. doi: 10.1016/0014-5793(80)80824-6. [DOI] [PubMed] [Google Scholar]
- Pittenauer E., Schmid E. R., Allmaier G., Pfanzagl B., Löffelhardt W., Fernández C. Q., de Pedro M. A., Stanek W. Structural characterization of the cyanelle peptidoglycan of Cyanophora paradoxa by 252Cf plasma desorption mass spectrometry and fast atom bombardment/tandem mass spectrometry. Biol Mass Spectrom. 1993 Sep;22(9):524–536. doi: 10.1002/bms.1200220906. [DOI] [PubMed] [Google Scholar]
- Plaimauer B., Pfanzagl B., Berenguer J., de Pedro M. A., Löffelhardt W. Subcellular distribution of enzymes involved in the biosynthesis of cyanelle murein in the protist Cyanophora paradoxa. FEBS Lett. 1991 Jun 24;284(2):169–172. doi: 10.1016/0014-5793(91)80677-u. [DOI] [PubMed] [Google Scholar]
- Schindler M., Mirelman D., Schwarz U. Quantitative determination of N-acetylglucosamine residues at the non-reducing ends of peptidoglycan chains by enzymic attachment of [14C]-D-galactose. Eur J Biochem. 1976 Dec;71(1):131–134. doi: 10.1111/j.1432-1033.1976.tb11098.x. [DOI] [PubMed] [Google Scholar]
- Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleifer K. H., Leuteritz M., Weiss N., Ludwig W., Kirchhof G., Seidel-Rüfer H. Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int J Syst Bacteriol. 1990 Jan;40(1):19–27. doi: 10.1099/00207713-40-1-19. [DOI] [PubMed] [Google Scholar]
- Tuomanen E., Markiewicz Z., Tomasz A. Autolysis-resistant peptidoglycan of anomalous composition in amino-acid-starved Escherichia coli. J Bacteriol. 1988 Mar;170(3):1373–1376. doi: 10.1128/jb.170.3.1373-1376.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WORK E. Reaction of ninhydrin in acid solution with straight-chain amino acids containing two amino groups and its application to the estimation of alpha epsilon-diaminopimelic acid. Biochem J. 1957 Nov;67(3):416–423. doi: 10.1042/bj0670416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Heijenoort Y., Gómez M., Derrien M., Ayala J., van Heijenoort J. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol. 1992 Jun;174(11):3549–3557. doi: 10.1128/jb.174.11.3549-3557.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]