Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(2):385–395. doi: 10.1128/jb.178.2.385-395.1996

Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress.

G Malin 1, A Lapidot 1
PMCID: PMC177669  PMID: 8550457

Abstract

The metabolic responses of a number of Streptomyces strains to osmotic and heat stress were studied by 13C nuclear magnetic resonance spectroscopy. During cell growth in a chemically defined medium supplemented with 0.5 M NaCl, tetrahydropyrimidine derivatives (THPs), 2-methyl-4-carboxy-5-hydroxy-3,4,5,6-tetrahydropyrimidine [THP(A)] and, to a lesser extent, 2-methyl-4-carboxy-3,4,5,6-tetrahydropyrimidine [THP(B)], were found to accumulate in a significant amount in all bacteria examined. In addition, when the growth temperature was shifted from 30 to 39 degrees C, the intracellular concentration of THP(A) increased significantly. Moreover, exogenously provided THP(A) or THP(B) or both reversed inhibition of Escherichia coli growth caused by osmotic stress and increased temperature. Although the ability of Streptomyces strains to tolerate high concentrations of NaCl is well known, very little is known about the osmoregulatory strategy in Streptomyces strains. Similarly, the mechanism by which compatible solutes accumulate in a variety of microorganisms is not understood. Our findings suggest the possibility of a novel mechanism of protection of DNA against salt and heat stresses involving the THPs.

Full Text

The Full Text of this article is available as a PDF (383.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharonowitz Y., Demain A. L. Influence of inorganic phosphate and organic buffers on cephalosporin production by Streptomyces clavuligerus. Arch Microbiol. 1977 Nov 18;115(2):169–173. doi: 10.1007/BF00406371. [DOI] [PubMed] [Google Scholar]
  2. Carpenter J. F., Crowe J. H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989 May 2;28(9):3916–3922. doi: 10.1021/bi00435a044. [DOI] [PubMed] [Google Scholar]
  3. Cayley S., Lewis B. A., Record M. T., Jr Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol. 1992 Mar;174(5):1586–1595. doi: 10.1128/jb.174.5.1586-1595.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flett F., Platt J., Oliver S. G. Isolation and characterization of temperature-sensitive mutants of Streptomyces coelicolor A3(2) blocked in macromolecular synthesis. J Gen Microbiol. 1992 Mar;138(3):579–585. doi: 10.1099/00221287-138-3-579. [DOI] [PubMed] [Google Scholar]
  6. Galinski E. A., Pfeiffer H. P., Trüper H. G. 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem. 1985 May 15;149(1):135–139. doi: 10.1111/j.1432-1033.1985.tb08903.x. [DOI] [PubMed] [Google Scholar]
  7. Guglielmi G., Mazodier P., Thompson C. J., Davies J. A survey of the heat shock response in four Streptomyces species reveals two groEL-like genes and three groEL-like proteins in Streptomyces albus. J Bacteriol. 1991 Nov;173(22):7374–7381. doi: 10.1128/jb.173.22.7374-7381.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Inbar L., Frolow F., Lapidot A. The conformation of new tetrahydropyrimidine derivatives in solution and in the crystal. Eur J Biochem. 1993 Jun 15;214(3):897–906. doi: 10.1111/j.1432-1033.1993.tb17993.x. [DOI] [PubMed] [Google Scholar]
  9. Inbar L., Lapidot A. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors. J Bacteriol. 1991 Dec;173(24):7790–7801. doi: 10.1128/jb.173.24.7790-7801.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inbar L., Lapidot A. Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry. J Bacteriol. 1988 Sep;170(9):4055–4064. doi: 10.1128/jb.170.9.4055-4064.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inbar L., Lapidot A. The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13C- and 15N-labeled L-glutamate and 13C and 15N NMR spectroscopy. J Biol Chem. 1988 Nov 5;263(31):16014–16022. [PubMed] [Google Scholar]
  12. Jebbar M., Talibart R., Gloux K., Bernard T., Blanco C. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol. 1992 Aug;174(15):5027–5035. doi: 10.1128/jb.174.15.5027-5035.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Killham K., Firestone M. K. Salt stress control of intracellular solutes in streptomycetes indigenous to saline soils. Appl Environ Microbiol. 1984 Feb;47(2):301–306. doi: 10.1128/aem.47.2.301-306.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lapidot A., Ben-Asher E., Eisenstein M. Tetrahydropyrimidine derivatives inhibit binding of a Tat-like, arginine-containing peptide, to HIV TAR RNA in vitro. FEBS Lett. 1995 Jun 19;367(1):33–38. doi: 10.1016/0014-5793(95)00514-a. [DOI] [PubMed] [Google Scholar]
  15. Martin J. F., Demain A. L. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. doi: 10.1128/mr.44.2.230-251.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Perroud B., Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985 Jan;161(1):393–401. doi: 10.1128/jb.161.1.393-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ron E. Z., Davis B. D. Growth rate of Escherichia coli at elevated temperatures: limitation by methionine. J Bacteriol. 1971 Aug;107(2):391–396. doi: 10.1128/jb.107.2.391-396.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES