Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(2):403–409. doi: 10.1128/jb.178.2.403-409.1996

Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii.

T Jahns 1
PMCID: PMC177671  PMID: 8550459

Abstract

The influence of ammonium and urea on the components of the proton electrochemical potential (delta p) and de novo synthesis of ATP was studied with Bacillus pasteurii ATCC 11859. In washed cells grown at high urea concentrations, a delta p of -56 +/- 29 mV, consisting of a membrane potential (delta psi) of -228 +/- 19 mV and of a transmembrane pH gradient (delta pH) equivalent to 172 +/- 38 mV, was measured. These cells contained only low amounts of potassium, and the addition of ammonium caused an immediate net decrease of both delta psi and delta pH, resulting in a net increase of delta p of about 49 mV and de novo synthesis of ATP. Addition of urea and its subsequent hydrolysis to ammonium by the cytosolic urease also caused an increase of delta p and ATP synthesis; a net initial increase of delta psi, accompanied by a slower decrease of delta pH in this case, was observed. Cells grown at low concentrations of urea contained high amounts of potassium and maintained a delta p of -113 +/- 26 mV, with a delta psi of -228 +/- 22 mV and a delta pH equivalent to 115 +/- 20 mV. Addition of ammonium to such cells resulted in the net decrease of delta psi and delta pH without a net increase in delta p or synthesis of ATP, whereas urea caused an increase of delta p and de novo synthesis of ATP, mainly because of a net increase of delta psi. The data reported in this work suggest that the ATP-generating system is coupled to urea hydrolysis via both an alkalinization of the cytoplasm by the ammonium generated in the urease reaction and a net increase of delta psi that is probably due to an efflux of ammonium ions. Furthermore, the findings of this study show that potassium ions are involved in the regulation of the intracellular pH and that ammonium ions may functionally replace potassium to a certain extent in reducing the membrane potential and alkalinizing the cytoplasm.

Full Text

The Full Text of this article is available as a PDF (234.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Hellingwerf K. J., Konings W. N. Effects of potassium ions on proton motive force in Rhodobacter sphaeroides. J Bacteriol. 1988 Dec;170(12):5647–5653. doi: 10.1128/jb.170.12.5647-5653.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BORNSIDE G. H., KALLIO R. E. Urea-hydrolyzing bacilli. II. Nutritional profiles. J Bacteriol. 1956 Jun;71(6):655–660. doi: 10.1128/jb.71.6.655-660.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bakker E. P., Mangerich W. E. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol. 1981 Sep;147(3):820–826. doi: 10.1128/jb.147.3.820-826.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buurman E. T., Pennock J., Tempest D. W., Teixeira de Mattos M. J., Neijssel O. M. Replacement of potassium ions by ammonium ions in different micro-organisms grown in potassium-limited chemostat culture. Arch Microbiol. 1989;152(1):58–63. doi: 10.1007/BF00447012. [DOI] [PubMed] [Google Scholar]
  5. Gibson T. An Investigation of the Bacillus Pasteuri Group: II. Special Physiology of the Organisms. J Bacteriol. 1934 Sep;28(3):313–322. doi: 10.1128/jb.28.3.313-322.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoffmann A., Dimroth P. The electrochemical proton potential of Bacillus alcalophilus. Eur J Biochem. 1991 Oct 15;201(2):467–473. doi: 10.1111/j.1432-1033.1991.tb16304.x. [DOI] [PubMed] [Google Scholar]
  7. Kakinuma Y., Igarashi K. Potassium/proton antiport system of growing Enterococcus hirae at high pH. J Bacteriol. 1995 Apr;177(8):2227–2229. doi: 10.1128/jb.177.8.2227-2229.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koyama N. Stimulatory effect of NH4+ on the transport of leucine and glucose in an anaerobic alkaliphile. Eur J Biochem. 1993 Oct 1;217(1):435–439. doi: 10.1111/j.1432-1033.1993.tb18263.x. [DOI] [PubMed] [Google Scholar]
  9. Koyama N., Wakabayashi K., Nosoh Y. Effect of K+ on the membrane functions of an alkalophilic Bacillus. Biochim Biophys Acta. 1987 Apr 23;898(3):293–298. doi: 10.1016/0005-2736(87)90069-1. [DOI] [PubMed] [Google Scholar]
  10. Michels M., Bakker E. P. Low-affinity potassium uptake system in Bacillus acidocaldarius. J Bacteriol. 1987 Sep;169(9):4335–4341. doi: 10.1128/jb.169.9.4335-4341.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mörsdorf G., Kaltwasser H. Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sporosarcina ureae. Arch Microbiol. 1989;152(2):125–131. doi: 10.1007/BF00456089. [DOI] [PubMed] [Google Scholar]
  12. Poolman B., Hellingwerf K. J., Konings W. N. Regulation of the glutamate-glutamine transport system by intracellular pH in Streptococcus lactis. J Bacteriol. 1987 May;169(5):2272–2276. doi: 10.1128/jb.169.5.2272-2276.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Romano N., Russo Alesi D., La Licata R., Tolone G. Effects of urea phosphate, ammonium ions and pH on Ureaplasma ATP synthesis. Microbiologica. 1986 Oct;9(4):405–413. [PubMed] [Google Scholar]
  14. SCHELEGEL H. G. Untersuchungen über den Phosphatstoffwechsel der wasserstoffoxydierenden Bakterien. Arch Mikrobiol. 1954;21(2):127–155. [PubMed] [Google Scholar]
  15. SCHMIDT K., LIAAENJENSEN S., SCHLEGEL H. G. DIE CAROTINOIDE DER THIORHODACEAE. I. OKENON ALS HAUPTEAROTINOID VON CHROMATIUM OKENII PERTY. Arch Mikrobiol. 1963 Aug 1;46:117–126. [PubMed] [Google Scholar]
  16. Smith D. G., Russell W. C., Ingledew W. J., Thirkell D. Hydrolysis of urea by Ureaplasma urealyticum generates a transmembrane potential with resultant ATP synthesis. J Bacteriol. 1993 Jun;175(11):3253–3258. doi: 10.1128/jb.175.11.3253-3258.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WILEY W. R., STOKES J. L. EFFECT OF PH AND AMMONIUM IONS ON THE PERMEABILITY OF BACILLUS PASTEURII. J Bacteriol. 1963 Dec;86:1152–1156. doi: 10.1128/jb.86.6.1152-1156.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WILEY W. R., STOKES J. L. Requirement of an alkaline pH and ammonia for substrate oxidation by Bacillus pasteurii. J Bacteriol. 1962 Oct;84:730–734. doi: 10.1128/jb.84.4.730-734.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zaritsky A., Kihara M., Macnab R. M. Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol. 1981;63(3):215–231. doi: 10.1007/BF01870983. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES