Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1974 Jun;51(2):231–235. doi: 10.1111/j.1476-5381.1974.tb09652.x

Manganese ions and synaptic transmission in the superior cervical ganglion of the cat

Krista Kostial, M Landeka, B Šlat
PMCID: PMC1776738  PMID: 4375523

Abstract

1 In the perfused superior cervical ganglion of the cat manganese ions (2.7 - 4.6 mM) caused a block of synaptic transmission and reduced the output of acetylcholine.

2 Calcium ions (8.4-10.5 mM) relieved the synaptic block produced by manganese and partially restored the acetylcholine output.

3 The presence of manganese also reduced the sensitivity of ganglion cells to injected acetylcholine.

4 Both effects of manganese were completely reversible.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Hodgkin A. L., Ridgway E. B. Depolarization and calcium entry in squid giant axons. J Physiol. 1971 Nov;218(3):709–755. doi: 10.1113/jphysiol.1971.sp009641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaustein M. P. Preganglionic stimulation increases calcium uptake by sympathetic ganglia. Science. 1971 Apr 23;172(3981):391–393. doi: 10.1126/science.172.3981.391. [DOI] [PubMed] [Google Scholar]
  3. Coraboeuf E., Vassort G. Effets de la tétrodotoxine, du tétraéthylammonium et du manganèse sur l'activité du myocarde de rat et de cobaye. C R Acad Sci Hebd Seances Acad Sci D. 1967 Feb 20;264(8):1072–1075. [PubMed] [Google Scholar]
  4. DEL CASTILLO J., ENGBAEK L. The nature of the neuromuscular block produced by magnesium. J Physiol. 1954 May 28;124(2):370–384. doi: 10.1113/jphysiol.1954.sp005114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  6. HUTTER O. F., KOSTIAL K. Effect of magnesium and calcium ions on the release of acetylcholine. J Physiol. 1954 May 28;124(2):234–241. doi: 10.1113/jphysiol.1954.sp005102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JURICIC Z., KOSTIAL K. Effect of manganese on synaptic transmission. Arh Hig Rada. 1956;7(1):27–29. [PubMed] [Google Scholar]
  8. KOSTIAL K., VOUK V. B. Lead ions and synaptic transmission in the superior cervical ganglion of the cat. Br J Pharmacol Chemother. 1957 Jun;12(2):219–222. doi: 10.1111/j.1476-5381.1957.tb00123.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kajimoto N., Kirpekar S. M. Effect of manganese and lanthanum on spontaneous release of acetylcholine at frog motor nerve terminals. Nat New Biol. 1972 Jan 5;235(53):29–30. doi: 10.1038/newbio235029a0. [DOI] [PubMed] [Google Scholar]
  10. Kosterlitz H. W., Waterfield A. A. Effects of calcium and manganese on acetylcholine release from the myenteric plexus of guinea-pig and rabbit ileum. Br J Pharmacol. 1972 May;45(1):157P–158P. [PMC free article] [PubMed] [Google Scholar]
  11. Meiri U., Rahamimoff R. Neuromuscular transmission: inhibition by manganese ions. Science. 1972 Apr 21;176(4032):308–309. doi: 10.1126/science.176.4032.308. [DOI] [PubMed] [Google Scholar]
  12. Nastuk W. L., Liu J. H. Muscle postjunctional membrane: changes in chemosensitivity produced by calcium. Science. 1966 Oct 14;154(3746):266–267. doi: 10.1126/science.154.3746.266. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES