Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(2):424–434. doi: 10.1128/jb.178.2.424-434.1996

Dra-nupC-pdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein.

H H Saxild 1, L N Andersen 1, K Hammer 1
PMCID: PMC177674  PMID: 8550462

Abstract

The genes encoding deoxyriboaldolase (dra), nucleoside uptake protein (nupC), and pyrimidine nucleoside sequences were determined. Sequence analysis showed that the genes were localized immediately downstream of the hut operon. Insertional gene disruption studies indicated that the three genes constitute an operon with the gene order dra-nupC-pdp. A promoter mapping immediately upstream of the dra gene was identified, and downstream of the pdp gene the nucleotide sequence indicated the existence of a factor-independent transcription terminator structure. In wild-type cells growing in succinate minimal medium, the pyrimidine nucleoside phosphorylase and deoxyriboaldolase levels were five- to eightfold higher in the presence of thymidine and fourfold higher in the presence of deoxyadenosine. By the use of lacZ fusions, the regulation was found to be at the level of transcription. The operon expression was subject to glucose repression. Upstream of the dra gene an open reading frame of 313 amino acids was identified. Inactivation of this gene led to an approximately 10-fold increase in the levels of deoxyriboaldolase and pyrimidine nucleoside phosphorylase, and no further induction was seen upon the addition of deoxyribonucleosides. The upstream gene most likely encodes the regulator for the dra-nupC-pdp operon and was designated deoR (stands for deoxyribonucleoside regulator).

Full Text

The Full Text of this article is available as a PDF (419.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaman T. C., Hitchins A. D., Ochi K., Vasantha N., Endo T., Freese E. Specificity and control of uptake of purines and other compounds in Bacillus subtilis. J Bacteriol. 1983 Dec;156(3):1107–1117. doi: 10.1128/jb.156.3.1107-1117.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol. 1972 Apr;110(1):281–290. doi: 10.1128/jb.110.1.281-290.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Craig J. E., Zhang Y., Gallagher M. P. Cloning of the nupC gene of Escherichia coli encoding a nucleoside transport system, and identification of an adjacent insertion element, IS 186. Mol Microbiol. 1994 Mar;11(6):1159–1168. doi: 10.1111/j.1365-2958.1994.tb00392.x. [DOI] [PubMed] [Google Scholar]
  6. Dandanell G., Valentin-Hansen P., Larsen J. E., Hammer K. Long-range cooperativity between gene regulatory sequences in a prokaryote. 1987 Feb 26-Mar 4Nature. 325(6107):823–826. doi: 10.1038/325823a0. [DOI] [PubMed] [Google Scholar]
  7. Fucik V., Kloudová A., Holý A. Transport of nucleosides in Bacillus subtilis: the effect of purine nucleosides on the cytidine-uptake. Nucleic Acids Res. 1974 Apr;1(4):639–644. doi: 10.1093/nar/1.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hammer-Jespersen K., Munch-Petersen A., Schwartz M., Nygaard P. Induction of enzymes involed in the catabolism of deoxyribonucleosides and ribonucleosides in Escherichia coli K 12. Eur J Biochem. 1971 Apr 30;19(4):533–538. doi: 10.1111/j.1432-1033.1971.tb01345.x. [DOI] [PubMed] [Google Scholar]
  9. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  10. Hueck C. J., Hillen W. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Mol Microbiol. 1995 Feb;15(3):395–401. doi: 10.1111/j.1365-2958.1995.tb02252.x. [DOI] [PubMed] [Google Scholar]
  11. Kloudová A., Fucik V. Transport of nucleosides in Bacillus subtilis: characteristics of cytidine-uptake. Nucleic Acids Res. 1974 Apr;1(4):629–637. doi: 10.1093/nar/1.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  14. Martinussen J., Glaser P., Andersen P. S., Saxild H. H. Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis. J Bacteriol. 1995 Jan;177(1):271–274. doi: 10.1128/jb.177.1.271-274.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maznitsa I. I., Sukhodolets V. V., Ukhabotina L. S. Klonirovanie genov Bacillus subtilis 168, kompensiruiushchikh defekt mutatsii po timidinfosforilaze i uridinfosforilaze v kletkakh Escherichia coli. Genetika. 1983 Jun;19(6):881–887. [PubMed] [Google Scholar]
  16. Mortensen L., Dandanell G., Hammer K. Purification and characterization of the deoR repressor of Escherichia coli. EMBO J. 1989 Jan;8(1):325–331. doi: 10.1002/j.1460-2075.1989.tb03380.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munch-Petersen A., Nygaard P., Hammer-Jespersen K., Fiil N. Mutants constitutive for nucleoside-catabolizing enzymes in Escherichia coli K12. Isolation, charactrization and mapping. Eur J Biochem. 1972 May 23;27(2):208–215. doi: 10.1111/j.1432-1033.1972.tb01828.x. [DOI] [PubMed] [Google Scholar]
  18. Rumiantseva E. V., Sukhodolets V. V., Smirnov Iu V. Poluchenie i issledovanie mutantov po genam katabolizma nukleozidov u Bacillus subtilis. Genetika. 1979;15(3):594–604. [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saxild H. H., Jacobsen J. H., Nygaard P. Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology. 1995 Sep;141(Pt 9):2211–2218. doi: 10.1099/13500872-141-9-2211. [DOI] [PubMed] [Google Scholar]
  21. Saxild H. H., Nygaard P. Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol. 1987 Jul;169(7):2977–2983. doi: 10.1128/jb.169.7.2977-2983.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Søgaard-Andersen L., Martinussen J., Møllegaard N. E., Douthwaite S. R., Valentin-Hansen P. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12. J Bacteriol. 1990 Oct;172(10):5706–5713. doi: 10.1128/jb.172.10.5706-5713.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Valentin-Hansen P., Højrup P., Short S. The primary structure of the DeoR repressor from Escherichia coli K-12. Nucleic Acids Res. 1985 Aug 26;13(16):5927–5936. doi: 10.1093/nar/13.16.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Valentin-Hansen P., Svenningsen B. A., Munch-Petersen A., Hammer-Jespersen K. Regulation of the deo operon in Escherichia coli: the double negative control of the deo operon by the cytR and deoR repressors in a DNA directed in vitro system. Mol Gen Genet. 1978 Feb 16;159(2):191–202. doi: 10.1007/BF00270893. [DOI] [PubMed] [Google Scholar]
  25. Walter M. R., Cook W. J., Cole L. B., Short S. A., Koszalka G. W., Krenitsky T. A., Ealick S. E. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution. J Biol Chem. 1990 Aug 15;265(23):14016–14022. doi: 10.2210/pdb1tpt/pdb. [DOI] [PubMed] [Google Scholar]
  26. Yoshida K., Sano H., Seki S., Oda M., Fujimura M., Fujita Y. Cloning and sequencing of a 29 kb region of the Bacillus subtilis genome containing the hut and wapA loci. Microbiology. 1995 Feb;141(Pt 2):337–343. doi: 10.1099/13500872-141-2-337. [DOI] [PubMed] [Google Scholar]
  27. Youngman P., Perkins J. B., Losick R. A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol Gen Genet. 1984;195(3):424–433. doi: 10.1007/BF00341443. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES