Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jan;178(2):456–461. doi: 10.1128/jb.178.2.456-461.1996

Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species.

A Ortalo-Magné 1, A Lemassu 1, M A Lanéelle 1, F Bardou 1, G Silve 1, P Gounon 1, G Marchal 1, M Daffé 1
PMCID: PMC177678  PMID: 8550466

Abstract

The surface-exposed lipids of Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium gastri, Mycobacterium smegmatis, and Mycobacterium aurum were isolated by gentle mechanical treatment of cells with glass beads. Analysis of the exposed lipids demonstrated a selective location of classes of ubiquitous lipids on the surfaces of mycobacteria. While phosphatidylethanolamine and phosphatidylinositol mannosides were exposed in all the species examined, dimycoloyl trehalose ("cord factor") was identified in the surface components of M. aurum only. Furthermore, monomycoloyl trehaloses and triacylglycerides were identified in the surface-exposed lipids of M. avium and M. smegmatis but not in those of the other mycobacterial species examined. The species- and type-species specific lipids were present on the mycobacterial cell surface: phenolic glycolipids, dimycocerosates of phthiocerols, and lipooligosaccharides were identified in the surface-exposed materials of M. tuberculosis (Canetti), M. kansasii, and M. gastri, whereas glycopeptidolipids were identified in the outermost lipid constituents of M. avium and M. smegmatis. This difference in the surface exposure of lipids of various mycobacterial species may reflect differences in their cell envelope organizations. Brief treatments of M. tuberculosis with Tween 80 prior to the use of glass beads led to erosion of regions of the capsule to expose gradually both cord factor and other lipids on the cell surface of the tubercle bacillus, demonstrating that the latter lipids are buried more deeply in the cell envelope and leading to the proposal of a scheme for the location of the capsular lipids of the tubercle bacillus.

Full Text

The Full Text of this article is available as a PDF (387.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akamatsu Y., Ono Y., Nojima S. Phospholipid patterns in subcellular fractions of Mycobacterium phlei. J Biochem. 1966 Feb;59(2):176–182. doi: 10.1093/oxfordjournals.jbchem.a128279. [DOI] [PubMed] [Google Scholar]
  2. BLOCH H. Studies on the virulence of tubercle bacilli; isolation and biological properties of a constituent of virulent organisms. J Exp Med. 1950 Feb;91(2):197-218, pl. doi: 10.1084/jem.91.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baer H. H. The structure of an antigenic glycolipid (SL-IV) from Mycobacterium tuberculosis. Carbohydr Res. 1993 Feb 24;240:1–22. doi: 10.1016/0008-6215(93)84167-5. [DOI] [PubMed] [Google Scholar]
  4. Barrow W. W., Ullom B. P., Brennan P. J. Peptidoglycolipid nature of the superficial cell wall sheath of smooth-colony-forming mycobacteria. J Bacteriol. 1980 Nov;144(2):814–822. doi: 10.1128/jb.144.2.814-822.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belisle J. T., Brennan P. J. Chemical basis of rough and smooth variation in mycobacteria. J Bacteriol. 1989 Jun;171(6):3465–3470. doi: 10.1128/jb.171.6.3465-3470.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Belisle J. T., Brennan P. J. Molecular basis of colony morphology in Mycobacterium avium. Res Microbiol. 1994 Mar-Apr;145(3):237–242. doi: 10.1016/0923-2508(94)90024-8. [DOI] [PubMed] [Google Scholar]
  7. Besra G. S., Bolton R. C., McNeil M. R., Ridell M., Simpson K. E., Glushka J., van Halbeek H., Brennan P. J., Minnikin D. E. Structural elucidation of a novel family of acyltrehaloses from Mycobacterium tuberculosis. Biochemistry. 1992 Oct 13;31(40):9832–9837. doi: 10.1021/bi00155a040. [DOI] [PubMed] [Google Scholar]
  8. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  9. Boddingius J., Dijkman H. P. Immunogold labeling method for Mycobacterium leprae-specific phenolic glycolipid in glutaraldehyde-osmium-fixed and Araldite-embedded leprosy lesions. J Histochem Cytochem. 1989 Apr;37(4):455–462. doi: 10.1177/37.4.2926124. [DOI] [PubMed] [Google Scholar]
  10. Brownback P. E., Barrow W. W. Modified lymphocyte response to mitogens after intraperitoneal injection of glycopeptidolipid antigens from Mycobacterium avium complex. Infect Immun. 1988 May;56(5):1044–1050. doi: 10.1128/iai.56.5.1044-1050.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cho S. N., Shin J. S., Daffe M., Chong Y., Kim S. K., Kim J. D. Production of monoclonal antibody to a phenolic glycolipid of Mycobacterium tuberculosis and its use in detection of the antigen in clinical isolates. J Clin Microbiol. 1992 Dec;30(12):3065–3069. doi: 10.1128/jcm.30.12.3065-3069.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  13. Daffe M., Cho S. N., Chatterjee D., Brennan P. J. Chemical synthesis and seroreactivity of a neoantigen containing the oligosaccharide hapten of the Mycobacterium tuberculosis-specific phenolic glycolipid. J Infect Dis. 1991 Jan;163(1):161–168. doi: 10.1093/infdis/163.1.161. [DOI] [PubMed] [Google Scholar]
  14. Daffe M., Laneelle M. A., Puzo G. Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis. Biochim Biophys Acta. 1983 May 16;751(3):439–443. doi: 10.1016/0005-2760(83)90304-1. [DOI] [PubMed] [Google Scholar]
  15. Daffe M., McNeil M., Brennan P. J. Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis. Biochemistry. 1991 Jan 15;30(2):378–388. doi: 10.1021/bi00216a011. [DOI] [PubMed] [Google Scholar]
  16. Daffé M., Lacave C., Lanéelle M. A., Gillois M., Lanéelle G. Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur J Biochem. 1988 Mar 15;172(3):579–584. doi: 10.1111/j.1432-1033.1988.tb13928.x. [DOI] [PubMed] [Google Scholar]
  17. Daffé M., Lacave C., Lanéelle M. A., Lanéelle G. Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium tuberculosis (strain Canetti). Eur J Biochem. 1987 Aug 17;167(1):155–160. doi: 10.1111/j.1432-1033.1987.tb13317.x. [DOI] [PubMed] [Google Scholar]
  18. Daffé M., Laneelle M. A. Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria. J Gen Microbiol. 1988 Jul;134(7):2049–2055. doi: 10.1099/00221287-134-7-2049. [DOI] [PubMed] [Google Scholar]
  19. Daffé M., Papa F., Laszlo A., David H. L. Glycolipids of recent clinical isolates of Mycobacterium tuberculosis: chemical characterization and immunoreactivity. J Gen Microbiol. 1989 Oct;135(10):2759–2766. doi: 10.1099/00221287-135-10-2759. [DOI] [PubMed] [Google Scholar]
  20. Douet J. P., Castroviejo M., Dodin A., Bébéar C. Purification and characterization of Kanagawa haemolysin from Vibrio parahaemolyticus. Res Microbiol. 1992 Jul-Aug;143(6):569–577. doi: 10.1016/0923-2508(92)90114-4. [DOI] [PubMed] [Google Scholar]
  21. Draper P., Payne S. N., Dobson G., Minnikin D. E. Isolation of a characteristic phthiocerol dimycocerosate from Mycobacterium leprae. J Gen Microbiol. 1983 Mar;129(3):859–863. doi: 10.1099/00221287-129-3-859. [DOI] [PubMed] [Google Scholar]
  22. Draper P., Rees R. J. Electron-transparent zone of mycobacteria may be a defence mechanism. Nature. 1970 Nov 28;228(5274):860–861. doi: 10.1038/228860a0. [DOI] [PubMed] [Google Scholar]
  23. Draper P., Rees R. J. The nature of the electron-transparent zone that surrounds Mycobacterium lepraemurium inside host cells. J Gen Microbiol. 1973 Jul;77(1):79–87. doi: 10.1099/00221287-77-1-79. [DOI] [PubMed] [Google Scholar]
  24. Draper P. The mycoside capsule of Mycobacterium Avium 357. J Gen Microbiol. 1974 Aug;83(2):431–433. doi: 10.1099/00221287-83-2-431. [DOI] [PubMed] [Google Scholar]
  25. Draper P. The structure of the mycobacterial cell envelope is not yet understood. Res Microbiol. 1991 May;142(4):420–422. doi: 10.1016/0923-2508(91)90113-o. [DOI] [PubMed] [Google Scholar]
  26. Fournie J. J., Adams E., Mullins R. J., Basten A. Inhibition of human lymphoproliferative responses by mycobacterial phenolic glycolipids. Infect Immun. 1989 Nov;57(11):3653–3659. doi: 10.1128/iai.57.11.3653-3659.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fournié J. J., Rivière M., Puzo G. Structural elucidation of the major phenolic glycolipid from Mycobacterium kansasii. I. Evidence for tetrasaccharide structure of the oligosaccharide moiety. J Biol Chem. 1987 Mar 5;262(7):3174–3179. [PubMed] [Google Scholar]
  28. Furuchi A., Tokunaga T. Nature of the receptor substance of Mycobacterium smegmatis for D4 bacteriophage adsorption. J Bacteriol. 1972 Aug;111(2):404–411. doi: 10.1128/jb.111.2.404-411.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gilleron M., Venisse A., Fournie J. J., Riviere M., Dupont M. A., Gas N., Puzo G. Structural and immunological properties of the phenolic glycolipids from Mycobacterium gastri and Mycobacterium kansasii. Eur J Biochem. 1990 Apr 20;189(1):167–173. doi: 10.1111/j.1432-1033.1990.tb15473.x. [DOI] [PubMed] [Google Scholar]
  30. Gilleron M., Vercauteren J., Puzo G. Lipo-oligosaccharidic antigen from Mycobacterium gastri. Complete structure of a novel C4-branched 3,6-dideoxy-alpha-xylo-hexopyranose. Biochemistry. 1994 Feb 22;33(7):1930–1937. doi: 10.1021/bi00173a041. [DOI] [PubMed] [Google Scholar]
  31. Goldman D. S. Subcellular localization of individual mannose-containing phospholipids in Mycobacterium tuberculosis. Am Rev Respir Dis. 1970 Oct;102(4):543–555. doi: 10.1164/arrd.1970.102.4.543. [DOI] [PubMed] [Google Scholar]
  32. Goren M. B., McClatchy J. K., Martens B., Brokl O. Mycosides C: behavior as receptor site substance for mycobacteriophage D4. J Virol. 1972 Jun;9(6):999–1003. doi: 10.1128/jvi.9.6.999-1003.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. HANKS J. H. Significance of capsular components of Mycobacterium leprae and other mycobacteria. Int J Lepr. 1961 Jan-Mar;29:74–83. [PubMed] [Google Scholar]
  34. Hunter S. W., Brennan P. J. Further specific extracellular phenolic glycolipid antigens and a related diacylphthiocerol from Mycobacterium leprae. J Biol Chem. 1983 Jun 25;258(12):7556–7562. [PubMed] [Google Scholar]
  35. Hunter S. W., Fujiwara T., Brennan P. J. Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J Biol Chem. 1982 Dec 25;257(24):15072–15078. [PubMed] [Google Scholar]
  36. Hunter S. W., Murphy R. C., Clay K., Goren M. B., Brennan P. J. Trehalose-containing lipooligosaccharides. A new class of species-specific antigens from Mycobacterium. J Biol Chem. 1983 Sep 10;258(17):10481–10487. [PubMed] [Google Scholar]
  37. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle. 1991 Mar;72(1):1–6. doi: 10.1016/0041-3879(91)90017-m. [DOI] [PubMed] [Google Scholar]
  38. Koul A. K., Gastambide-Odier M. Microanalyse rapide de dimycocérosate de phtiocérol, de mycosides et de glycérides dans les extraits à l'éther de pétrole de Mycobacterium kansasii et du BCG, souche Pasteur. Biochimie. 1977;59(5-6):535–538. doi: 10.1016/s0300-9084(77)80059-x. [DOI] [PubMed] [Google Scholar]
  39. Lemassu A., Daffé M. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J. 1994 Jan 15;297(Pt 2):351–357. doi: 10.1042/bj2970351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lemassu A., Lanéelle M. A., Daffé M. Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):171–175. doi: 10.1016/0378-1097(91)90153-2. [DOI] [PubMed] [Google Scholar]
  41. McNeil M. R., Brennan P. J. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; some thoughts and possibilities arising from recent structural information. Res Microbiol. 1991 May;142(4):451–463. doi: 10.1016/0923-2508(91)90120-y. [DOI] [PubMed] [Google Scholar]
  42. Mehra V., Brennan P. J., Rada E., Convit J., Bloom B. R. Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid. Nature. 1984 Mar 8;308(5955):194–196. doi: 10.1038/308194a0. [DOI] [PubMed] [Google Scholar]
  43. Minnikin D. E., Dobson G., Goodfellow M., Magnusson M., Ridell M. Distribution of some mycobacterial waxes based on the phthiocerol family. J Gen Microbiol. 1985 Jun;131(6):1375–1381. doi: 10.1099/00221287-131-6-1375. [DOI] [PubMed] [Google Scholar]
  44. Neill M. A., Klebanoff S. J. The effect of phenolic glycolipid-1 from Mycobacterium leprae on the antimicrobial activity of human macrophages. J Exp Med. 1988 Jan 1;167(1):30–42. doi: 10.1084/jem.167.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nishiura M., Izumi S., Mori T., Takeo K., Nonaka T. Freeze-etching study of human and murine leprosy bacilli. Int J Lepr Other Mycobact Dis. 1977 Jul-Sep;45(3):248–254. [PubMed] [Google Scholar]
  46. Oka S., Fukushi K., Fujimoto M., Sato H., Motomiya M. La distribution subcellulaire des phospholipides de la Mycobactérie. C R Seances Soc Biol Fil. 1968;162(8):1648–1650. [PubMed] [Google Scholar]
  47. Ortalo-Magné A., Dupont M. A., Lemassu A., Andersen A. B., Gounon P., Daffé M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology. 1995 Jul;141(Pt 7):1609–1620. doi: 10.1099/13500872-141-7-1609. [DOI] [PubMed] [Google Scholar]
  48. Prasad H. K., Mishra R. S., Nath I. Phenolic glycolipid-I of Mycobacterium leprae induces general suppression of in vitro concanavalin A responses unrelated to leprosy type. J Exp Med. 1987 Jan 1;165(1):239–244. doi: 10.1084/jem.165.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rastogi N., Levy-Frebault V., Blom-Potar M. C., David H. L. Ability of smooth and rough variants of Mycobacterium avium and M. intracellulare to multiply and survive intracellularly: role of C-mycosides. Zentralbl Bakteriol Mikrobiol Hyg A. 1989 Jan;270(3):345–360. doi: 10.1016/s0176-6724(89)80003-3. [DOI] [PubMed] [Google Scholar]
  50. Rulong S., Aguas A. P., da Silva P. P., Silva M. T. Intramacrophagic Mycobacterium avium bacilli are coated by a multiple lamellar structure: freeze fracture analysis of infected mouse liver. Infect Immun. 1991 Nov;59(11):3895–3902. doi: 10.1128/iai.59.11.3895-3902.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sut A., Sirugue S., Sixou S., Lakhdar-Ghazal F., Tocanne J. F., Lanéelle G. Mycobacteria glycolipids as potential pathogenicity effectors: alteration of model and natural membranes. Biochemistry. 1990 Sep 11;29(36):8498–8502. doi: 10.1021/bi00488a042. [DOI] [PubMed] [Google Scholar]
  52. Vachula M., Holzer T. J., Andersen B. R. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J Immunol. 1989 Mar 1;142(5):1696–1701. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES