Abstract
1 In conscious unrestrained cats noradrenaline, α-methylnoradrenaline and clonidine, infused into the lateral cerebral ventricles (i.c.v.) caused dose-related falls in blood pressure and heart rate; both effects were abolished after i.c.v. phentolamine.
2 In 12 out of 20 cats, i.c.v. isoprenaline and salbutamol when given caused dose-related pressor responses and tachycardias. These effects were abolished after i.c.v. β-adrenoceptor blocking drugs but were unaffected by α-adrenoceptor blocking agents.
3 In 5 out of 20 cats, i.c.v. isoprenaline regularly produced dose-related falls in blood pressure with associated tachycardias; both effects were abolished after i.c.v. β-adrenoceptor blocking agents.
4 Intracerebroventricular dopamine produced cardiovascular responses which were qualitatively similar to those produced by i.c.v. isoprenaline.
5 Intracerebroventricular adrenaline produced complex responses in untreated animals but typical α-effects were obtained after prior i.c.v. treatment with a β-adrenoceptor blocking agent and typical β-effects after i.c.v. pretreatment with an α-adrenoceptor blocking agent.
6 The cardiovascular changes produced by i.c.v. β-adrenoceptor agonists were abolished after systemic administration of hexamethonium or bethanidine.
7 The results are discussed in the light of the mode of action of β-adrenoceptor stimulants and β-adrenoceptor blocking agents in the treatment of hypertension.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beilin L. J., Juel-Jensen B. E. Alpha and beta adrenergic blockade in hypertension. Lancet. 1972 May 6;1(7758):979–982. doi: 10.1016/s0140-6736(72)91154-3. [DOI] [PubMed] [Google Scholar]
- Bhargava K. P., Mishra N., Tangri K. K. An analysis of central adrenoceptors for control of cardiovascular function. Br J Pharmacol. 1972 Aug;45(4):596–602. doi: 10.1111/j.1476-5381.1972.tb08117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day M. D., Roach A. G. -Adrenergic receptors in the central nervous system of the cat concerned with control of arterial blood pressure and heart rate. Nat New Biol. 1973 Mar 7;242(114):30–31. doi: 10.1038/newbio242030a0. [DOI] [PubMed] [Google Scholar]
- Day M. D., Roach A. G. Adrenoceptors in the central nervous system concerned with cardiovascular control. J Pharm Pharmacol. 1972 Dec;24(Suppl):148P–148P. [PubMed] [Google Scholar]
- Day M. D., Roach A. G., Whiting R. L. The mechanism of the antihypertensive action of -methyldopa in hypertensive rats. Eur J Pharmacol. 1973 Mar;21(3):271–280. doi: 10.1016/0014-2999(73)90126-x. [DOI] [PubMed] [Google Scholar]
- Day M. D., Roach A. G., Whiting R. L. The mode of action of -methyldopa. Br J Pharmacol. 1972 May;45(1):168P–169P. [PMC free article] [PubMed] [Google Scholar]
- Day M. D., Whiting R. L. An improved valve device for the continuous measurement of arterial blood pressure in the conscious unrestrained cat. J Pharm Pharmacol. 1972 Mar;24(3):263–264. doi: 10.1111/j.2042-7158.1972.tb08983.x. [DOI] [PubMed] [Google Scholar]
- Dollery C. T., Lewis P. H., Myers M. G., Reid J. L. Central hypotensive effect of propranolol in the rabbit. Br J Pharmacol. 1973 Jun;48(2):343P–343P. [PMC free article] [PubMed] [Google Scholar]
- Fitzgerald J. D. Perspectives in adrenergic beta-receptor blockade. Clin Pharmacol Ther. 1969 May-Jun;10(3):292–306. doi: 10.1002/cpt1969103292. [DOI] [PubMed] [Google Scholar]
- Gagnon D. J., Melville K. I. Centrally mediated cardiovascular responses to isoprenaline. Int J Neuropharmacol. 1967 Jul;6(4):245–251. doi: 10.1016/0028-3908(67)90012-3. [DOI] [PubMed] [Google Scholar]
- Hayden J. F., Johnson L. R., Maickel R. P. Construction and implantation of a permanent cannula for making injections into the lateral ventricle of the rat brain. Life Sci. 1966 Aug;5(16):1509–1515. doi: 10.1016/0024-3205(66)90227-x. [DOI] [PubMed] [Google Scholar]
- Heise A., Kroneberg G. -Sympathetic receptor stimulation in the brain and hypotensive activity of -methyldopa. Eur J Pharmacol. 1972 Feb;17(2):315–317. doi: 10.1016/0014-2999(72)90180-x. [DOI] [PubMed] [Google Scholar]
- Henning M., van Zwieten P. A. Central hypotensive effect of alpha-methyldopa. J Pharm Pharmacol. 1968 Jun;20(6):409–417. doi: 10.1111/j.2042-7158.1968.tb09776.x. [DOI] [PubMed] [Google Scholar]
- Kelliher G. J., Buckley J. P. Central hypotensive activity of dl- and d-propranolol. J Pharm Sci. 1970 Sep;59(9):1276–1280. doi: 10.1002/jps.2600590914. [DOI] [PubMed] [Google Scholar]
- MCCUBBIN J. W., KANEKO Y., PAGE I. H. Ability of serotonin and norepinephrine to mimic the central effects of reserpine on vasomotor activity. Circ Res. 1960 Jul;8:849–858. doi: 10.1161/01.res.8.4.849. [DOI] [PubMed] [Google Scholar]
- POPOVIC V., POPOVIC P. Permanent cannulation of aorta and vena cava in rats and ground squirrels. J Appl Physiol. 1960 Jul;15:727–728. doi: 10.1152/jappl.1960.15.4.727. [DOI] [PubMed] [Google Scholar]
- Schmitt H., Boissier J. R., Giudicelli J. F., Fichelle J. Cardiovascular effects of 2-(2,6-dichlorophenylamino)-2-imidazoline hydrochloride (ST 155). II. Central sympathetic structures. Eur J Pharmacol. 1968 Mar;2(5):340–346. doi: 10.1016/0014-2999(68)90184-2. [DOI] [PubMed] [Google Scholar]
- Schmitt H., Fenard S. Evidence for an alpha-sympathomimetic component in the effects of catapresan on vasomotor centres: antagonism by piperoxane. Eur J Pharmacol. 1971;14(1):98–100. doi: 10.1016/0014-2999(71)90130-0. [DOI] [PubMed] [Google Scholar]
- Schmitt H., Fénard S. Effets des substances sympathomimétiques sur les centres vasomoteurs. Arch Int Pharmacodyn Ther. 1971 Apr;190(2):229–240. [PubMed] [Google Scholar]
- Srivastava R. K., Kulshrestha V. K., Singh N., Bhargava K. P. Central cardiovascular effects of intracerebroventricular propranolol. Eur J Pharmacol. 1973 Feb;21(2):222–229. doi: 10.1016/0014-2999(73)90230-6. [DOI] [PubMed] [Google Scholar]
- Stern S., Hoffman M., Braun K. Cardiovascular responses to carotid and vertebral artery infusions of propranolol. Cardiovasc Res. 1971 Oct;5(4):425–430. doi: 10.1093/cvr/5.4.425. [DOI] [PubMed] [Google Scholar]
- Toda N., Matsuda Y., Shimamoto K. Cardiovascular effects of sympathomimetic amines injected into the cerebral ventricles of rabbits. Int J Neuropharmacol. 1969 Sep;8(5):451–461. doi: 10.1016/0028-3908(69)90061-6. [DOI] [PubMed] [Google Scholar]
- van Zwieten P. A. The central action of antihypertensive drugs, mediated via central alpha-receptors. J Pharm Pharmacol. 1973 Feb;25(2):89–95. doi: 10.1111/j.2042-7158.1973.tb10599.x. [DOI] [PubMed] [Google Scholar]