Abstract
1 The equipotent molar ratios of a range of tryptamine analogues, as compared with 5-hydroxytryptamine (5-HT), have been determined on the basis of their ability to hyperpolarize the membrane potential of the Retzius cell of the leech, Hirudo medicinalis.
2 The substitution of methyl, fluoro, chloro, methoxy or acetyl groups onto the 5-HT molecule progressively reduced the potency.
3 5-Methoxylation or terminal N-methylation of tryptamine considerably increased the potency of tryptamine but these compounds tended to depolarize cells rather than cause hyperpolarization. In some experiments they were ineffective on preparations pretreated with 5-HT.
4 It is suggested that these compounds may act by a different mechanism from the 5-hydroxylated indoles, perhaps involving a different receptor.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARLOW R. B., KHAN I. Actions of some analogues of 5-hydroxytryptamine on the isolated rat uterus and the rat fundus strip preparations. Br J Pharmacol Chemother. 1959 Jun;14(2):265–272. doi: 10.1111/j.1476-5381.1959.tb01397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARLOW R. B., KHAN I. Actions of some analogues of tryptamine on the isolated rat uterus and on the isolated rat fundus strip preparations. Br J Pharmacol Chemother. 1959 Mar;14(1):99–107. doi: 10.1111/j.1476-5381.1959.tb00934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERTACCINI G., ZAMBONI P. The relative potency of 5-hydroxytryptamine like substances. Arch Int Pharmacodyn Ther. 1961 Aug-Sep;133:138–156. [PubMed] [Google Scholar]
- Baylor D. A., Nicholls J. G. Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech. J Physiol. 1969 Aug;203(3):591–609. doi: 10.1113/jphysiol.1969.sp008881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. The mode of action of 5-hydroxytryptamine. J Exp Biol. 1972 Apr;56(2):311–321. doi: 10.1242/jeb.56.2.311. [DOI] [PubMed] [Google Scholar]
- CURTIS D. R., DAVIS R. Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Br J Pharmacol Chemother. 1962 Apr;18:217–246. doi: 10.1111/j.1476-5381.1962.tb01404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chong G. C., Phillis J. W. Pharmacological studies on the heart of Tapes watlingi: a mollusc of the family Veneridae. Br J Pharmacol Chemother. 1965 Oct;25(2):481–496. doi: 10.1111/j.1476-5381.1965.tb02066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coggeshall R. E., Dewhurst S. A., Weinreich D., McCaman R. E. Aromatic acid decarboxylase and choline acetylase activities in a single identified 5-HT containing cell of the leech. J Neurobiol. 1972;3(3):259–265. doi: 10.1002/neu.480030308. [DOI] [PubMed] [Google Scholar]
- Cottrell G. A. Action of imipramine on 5-hydroxytryptaminergic transmission and on 5-hydroxytryptamine uptake in the snail (Helix pomatia) brain. Br J Pharmacol. 1971 Oct;43(2):437P–437P. [PMC free article] [PubMed] [Google Scholar]
- GREENBERG M. J. Structure-activity relationship of tryptamine analogues on the heart of Venus mercenaria. Br J Pharmacol Chemother. 1960 Sep;15:375–388. doi: 10.1111/j.1476-5381.1960.tb01260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GYERMEK L., BINDLER E. Action of indole alkylamines and amidines on the inferior mesenteric ganglion of the cat. J Pharmacol Exp Ther. 1962 Nov;138:159–164. [PubMed] [Google Scholar]
- HAGIWARA S., MORITA H. Electrotonic transmission between two nerve cells in leech ganglion. J Neurophysiol. 1962 Nov;25:721–731. doi: 10.1152/jn.1962.25.6.721. [DOI] [PubMed] [Google Scholar]
- KUFFLER S. W., POTTER D. D. GLIA IN THE LEECH CENTRAL NERVOUS SYSTEM: PHYSIOLOGICAL PROPERTIES AND NEURON-GLIA RELATIONSHIP. J Neurophysiol. 1964 Mar;27:290–320. doi: 10.1152/jn.1964.27.2.290. [DOI] [PubMed] [Google Scholar]
- Kerkut G. A., Sedden C. B., Walker R. J. Cellular localization of monoamines by fluorescence microscopy in Hirudo medicinalis and Lumbricus terrestris. Comp Biochem Physiol. 1967 Jun;21(3):687–690. doi: 10.1016/0010-406x(67)90462-8. [DOI] [PubMed] [Google Scholar]
- Kerkut G. A., Walker R. J. The action of acetylcholine, dopamine and 5-hydroxytryptamine on the spontaneous activity of the cells of Retzius of the leech, Hirudo medicinalis. Br J Pharmacol Chemother. 1967 Aug;30(3):644–654. doi: 10.1111/j.1476-5381.1967.tb02171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCaman M. W., Weinreich D., McCaman R. E. The determination of picomole levels of 5-hydroxytryptamine and dopamine in Aplysia, Tritonia and leech nervous tissues. Brain Res. 1973 Apr 13;53(1):129–137. doi: 10.1016/0006-8993(73)90772-5. [DOI] [PubMed] [Google Scholar]
- NICHOLLS J. G., KUFFLER S. W. EXTRACELLULAR SPACE AS A PATHWAY FOR EXCHANGE BETWEEN BLOOD AND NEURONS IN THE CENTRAL NERVOUS SYSTEM OF THE LEECH: IONIC COMPOSITION OF GLIAL CELLS AND NEURONS. J Neurophysiol. 1964 Jul;27:645–671. doi: 10.1152/jn.1964.27.4.645. [DOI] [PubMed] [Google Scholar]
- Rude S., Coggeshall E., Van Orden L. S., 3rd Chemical and ultrastructural identification of 5-hydroxytryptamine in an identified neuron. J Cell Biol. 1969 Jun;41(3):832–854. doi: 10.1083/jcb.41.3.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. A., Walker R. J. Studies on 5-hydroxytryptamine receptors of neurones from Hirudo medicinalis. Br J Pharmacol. 1973 Mar;47(3):633P–634P. [PMC free article] [PubMed] [Google Scholar]
- VANE J. R. The relative activities of some tryptamine analogues on the isolated rat stomach strip preparation. Br J Pharmacol Chemother. 1959 Mar;14(1):87–98. doi: 10.1111/j.1476-5381.1959.tb00933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]