Abstract
Three outer membrane proteins with molecular masses of 40, 38, and 27 kDa of the hypertoxinogenic strain 569B of Vibrio cholerae have been purified to homogeneity. The synthesis of all the three proteins is regulated by the osmolarity of the growth medium. The pore-forming ability of the 40-kDa protein, OmpT, and the 38-kDa protein, OmpU, has been demonstrated by using liposomes, in which these proteins were embedded. The 27-kDa protein, OmpX, though osmoregulated, is not a porin. OmpU constitutes 30% of the total outer membrane protein when grown in the presence of 1.0% NaCl in the growth medium and 60% in the absence of NaCl. OmpU is an acidic protein and is a homotrimer of 38-kDa monomeric units. Its secondary structure contains predominantly a beta-sheet, and three to four Ca2+ ions are associated with each monomeric unit. Removal of Ca2+ irreversibly disrupts the structure and pore-forming ability of the protein. The pore size of OmpU is 1.6 nm, and the specific activity of the OmpU channel is two- to threefold higher than that of Escherichia coli porin OmpF, synthesis of which resembles that of OmpU with respect to the osmolarity of the growth medium. The pore size of OmpT, which is analogous to OmpC of E. coli, is smaller than that of OmpU. Southern blot hybridization of V. cholerae genomic DNA digested with several restriction endonucleases with nick-translated E. coli ompF as the probe revealed no nucleotide sequence homology between the ompU and ompF genes. OmpU is also not antigenically related to OmpF. Anti-OmpF antiserum, however, cross-reacted with the 45-kDa V. cholerae outer membrane protein, OmpS, the synthesis of which is regulated by the presence of maltose in the growth medium. OmpU hemagglutinated with rabbit and human blood. This toxR-regulated protein is one of the possible virulence determinants in V. cholerae (V. L. Miller and J. J. Mekalanos, J. Bacteriol. 170:2575-2583, 1988).
Full Text
The Full Text of this article is available as a PDF (298.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEAVEN G. H., HOLIDAY E. R. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319–386. doi: 10.1016/s0065-3233(08)60022-4. [DOI] [PubMed] [Google Scholar]
- Chakrabarti D., Chatterjee A. N. Studies on heterogeneous lipopolysaccharide fractions of Vibrio cholerae 569B. J Gen Microbiol. 1984 Aug;130(8):2023–2026. doi: 10.1099/00221287-130-8-2023. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T. A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1285–1291. doi: 10.1016/s0006-291x(71)80225-5. [DOI] [PubMed] [Google Scholar]
- Deb A., Bhattacharyya D., Das J. A 25-kDa beta-lactam-induced outer membrane protein of Vibrio cholerae. Purification and characterization. J Biol Chem. 1995 Feb 17;270(7):2914–2920. doi: 10.1074/jbc.270.7.2914. [DOI] [PubMed] [Google Scholar]
- DiRita V. J., Parsot C., Jander G., Mekalanos J. J. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5403–5407. doi: 10.1073/pnas.88.12.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lohia A., Chatterjee A. N., Das J. Lysis of Vibrio cholerae cells: direct isolation of the outer membrane from whole cells by treatment with urea. J Gen Microbiol. 1984 Aug;130(8):2027–2033. doi: 10.1099/00221287-130-8-2027. [DOI] [PubMed] [Google Scholar]
- Lohia A., Majumdar S., Chatterjee A. N., Das J. Effect of changes in the osmolarity of the growth medium on Vibrio cholerae cells. J Bacteriol. 1985 Sep;163(3):1158–1166. doi: 10.1128/jb.163.3.1158-1166.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. doi: 10.1016/0014-5793(75)80272-9. [DOI] [PubMed] [Google Scholar]
- Lång H., Palva E. T. The ompS gene of Vibrio cholerae encodes a growth-phase-dependent maltoporin. Mol Microbiol. 1993 Nov;10(4):891–901. doi: 10.1111/j.1365-2958.1993.tb00960.x. [DOI] [PubMed] [Google Scholar]
- Miller V. L., Mekalanos J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988 Jun;170(6):2575–2583. doi: 10.1128/jb.170.6.2575-2583.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitsuyama J., Hiruma R., Yamaguchi A., Sawai T. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of beta-lactams. Antimicrob Agents Chemother. 1987 Mar;31(3):379–384. doi: 10.1128/aac.31.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikaido H., Nikaido K., Harayama S. Identification and characterization of porins in Pseudomonas aeruginosa. J Biol Chem. 1991 Jan 15;266(2):770–779. [PubMed] [Google Scholar]
- Nikaido H. Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992 Feb;6(4):435–442. doi: 10.1111/j.1365-2958.1992.tb01487.x. [DOI] [PubMed] [Google Scholar]
- Nikaido H. Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. Methods Enzymol. 1983;97:85–100. doi: 10.1016/0076-6879(83)97122-7. [DOI] [PubMed] [Google Scholar]
- Nikaido H. Transport across the bacterial outer membrane. J Bioenerg Biomembr. 1993 Dec;25(6):581–589. doi: 10.1007/BF00770245. [DOI] [PubMed] [Google Scholar]
- Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Paul S., Chaudhuri K., Chatterjee A. N., Das J. Presence of exposed phospholipids in the outer membrane of Vibrio cholerae. J Gen Microbiol. 1992 Apr;138(4):755–761. doi: 10.1099/00221287-138-4-755. [DOI] [PubMed] [Google Scholar]
- Redmond J. W., Korsch M. J., Jackson G. D. Immunochemical studies to the O-antigens of vibrio cholerae. Partial characterization of an acid-labile antigenic determinant. Aust J Exp Biol Med Sci. 1973 Apr;51(2):229–235. doi: 10.1038/icb.1973.20. [DOI] [PubMed] [Google Scholar]
- Rocque W. J., Coughlin R. T., McGroarty E. J. Lipopolysaccharide tightly bound to porin monomers and trimers from Escherichia coli K-12. J Bacteriol. 1987 Sep;169(9):4003–4010. doi: 10.1128/jb.169.9.4003-4010.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 1974 Dec 25;249(24):8019–8029. [PubMed] [Google Scholar]
- Roy N. K., Ghosh R. K., Das J. Monomeric alkaline phosphatase of Vibrio cholerae. J Bacteriol. 1982 Jun;150(3):1033–1039. doi: 10.1128/jb.150.3.1033-1039.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahu G. K., Chowdhury R., Das J. Heat shock response and heat shock protein antigens of Vibrio cholerae. Infect Immun. 1994 Dec;62(12):5624–5631. doi: 10.1128/iai.62.12.5624-5631.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen K., Nikaido H. Trimerization of an in vitro synthesized OmpF porin of Escherichia coli outer membrane. J Biol Chem. 1991 Jun 15;266(17):11295–11300. [PubMed] [Google Scholar]
- Sengupta T. K., Chaudhuri K., Majumdar S., Lohia A., Chatterjee A. N., Das J. Interaction of Vibrio cholerae cells with beta-lactam antibiotics: emergence of resistant cells at a high frequency. Antimicrob Agents Chemother. 1992 Apr;36(4):788–795. doi: 10.1128/aac.36.4.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson G., Leavesley D. I., Lagnado C. A., Heuzenroeder M. W., Manning P. A. Purification of the 25-kDa Vibrio cholerae major outer-membrane protein and the molecular cloning of its gene: ompV. Eur J Biochem. 1985 Apr 15;148(2):385–390. doi: 10.1111/j.1432-1033.1985.tb08850.x. [DOI] [PubMed] [Google Scholar]
- Sukupolvi S., Vaara M. Salmonella typhimurium and Escherichia coli mutants with increased outer membrane permeability to hydrophobic compounds. Biochim Biophys Acta. 1989 Dec 6;988(3):377–387. doi: 10.1016/0304-4157(89)90011-7. [DOI] [PubMed] [Google Scholar]
- Trias J., Jarlier V., Benz R. Porins in the cell wall of mycobacteria. Science. 1992 Nov 27;258(5087):1479–1481. doi: 10.1126/science.1279810. [DOI] [PubMed] [Google Scholar]
- Weckesser J., Zalman L. S., Nikaido H. Porin from Rhodopseudomonas sphaeroides. J Bacteriol. 1984 Jul;159(1):199–205. doi: 10.1128/jb.159.1.199-205.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss M. S., Schulz G. E. Porin conformation in the absence of calcium. Refined structure at 2.5 A resolution. J Mol Biol. 1993 Jun 5;231(3):817–824. doi: 10.1006/jmbi.1993.1328. [DOI] [PubMed] [Google Scholar]
- Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]