Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(3):606–610. doi: 10.1128/jb.178.3.606-610.1996

Proteolytic degradation of dinitrogenase reductase from Anabaena variabilis (ATCC 29413) as a consequence of ATP depletion and impact of oxygen.

J Durner 1, I Böhm 1, O C Knörzer 1, P Böger 1
PMCID: PMC177701  PMID: 8550489

Abstract

Both components of nitrogenase, dinitrogenase and dinitrogenase reductase, are rapidly inactivated by oxygen. To investigate the proteolytic degradation of dinitrogenase reductase irreversibly destroyed by high oxygen concentrations, we carried out in vitro experiments with heterocyst extracts from Anabaena variabilis ATCC 29413. The results indicate a direct dependence of degradation on the applied oxygen concentration. Although the degrees of degradation were similar for both the modified and unmodified subunits of dinitrogenase reductase, there was a significant difference with respect to the cleavage products observed. The pattern of effective protease inhibitors suggests the involvement of serine proteases with chymotrypsin- and trypsin-like specificity. A protective effect was obtained by saturation of the nucleotide binding sites of dinitrogenase reductase with either ATP or ADP. As shown by gel filtration experiments, the adenylates prevented the nitrogenase subunits from extensive noncovalent aggregation, which is usually considered evidence for a denaturing process. The in vitro degradation of dinitrogenase reductase is discussed in connection with previous reports on degradation of nitrogenase in cyanobacteria under oxygen stress and/or starvation.

Full Text

The Full Text of this article is available as a PDF (281.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burris R. H. Nitrogenases. J Biol Chem. 1991 May 25;266(15):9339–9342. [PubMed] [Google Scholar]
  2. Böhm I., Halbherr A., Smaglinski S., Ernst A., Böger P. In vitro activation of dinitrogenase reductase from the cyanobacterium Anabaena variabilis (ATCC 29413). J Bacteriol. 1992 Oct;174(19):6179–6183. doi: 10.1128/jb.174.19.6179-6183.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chow T. J., Tabita F. R. Reciprocal light-dark transcriptional control of nif and rbc expression and light-dependent posttranslational control of nitrogenase activity in Synechococcus sp. strain RF-1. J Bacteriol. 1994 Oct;176(20):6281–6285. doi: 10.1128/jb.176.20.6281-6285.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cordewener J., Haaker H., Van Ewijk P., Veeger C. Properties of the MgATP and MgADP binding sites on the Fe protein of nitrogenase from Azotobacter vinelandii. Eur J Biochem. 1985 May 2;148(3):499–508. doi: 10.1111/j.1432-1033.1985.tb08867.x. [DOI] [PubMed] [Google Scholar]
  5. Durner J., Böhm I., Hilz H., Böger P. Posttranslational modification of nitrogenase. Differences between the purple bacterium Rhodospirillum rubrum and the cyanobacterium Anabaena variabilis. Eur J Biochem. 1994 Feb 15;220(1):125–130. doi: 10.1111/j.1432-1033.1994.tb18606.x. [DOI] [PubMed] [Google Scholar]
  6. Fay P. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev. 1992 Jun;56(2):340–373. doi: 10.1128/mr.56.2.340-373.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Giulivi C., Pacifici R. E., Davies K. J. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch Biochem Biophys. 1994 Jun;311(2):329–341. doi: 10.1006/abbi.1994.1245. [DOI] [PubMed] [Google Scholar]
  8. Govezensky D., Greener T., Segal G., Zamir A. Involvement of GroEL in nif gene regulation and nitrogenase assembly. J Bacteriol. 1991 Oct;173(20):6339–6346. doi: 10.1128/jb.173.20.6339-6346.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
  10. Howard J. B., Rees D. C. Nitrogenase: a nucleotide-dependent molecular switch. Annu Rev Biochem. 1994;63:235–264. doi: 10.1146/annurev.bi.63.070194.001315. [DOI] [PubMed] [Google Scholar]
  11. Jentsch S., Seufert W., Hauser H. P. Genetic analysis of the ubiquitin system. Biochim Biophys Acta. 1991 Jun 13;1089(2):127–139. doi: 10.1016/0167-4781(91)90001-3. [DOI] [PubMed] [Google Scholar]
  12. Kavanagh E. P., Hill S. Oxygen inhibition of nitrogenase activity in Klebsiella pneumoniae. J Gen Microbiol. 1993 Jun;139(Pt 6):1307–1314. doi: 10.1099/00221287-139-6-1307. [DOI] [PubMed] [Google Scholar]
  13. Paerl H. W., Kellar P. E. Nitrogen-fixing anabaena: physiological adaptations instrumental in maintaining surface blooms. Science. 1979 May 11;204(4393):620–622. doi: 10.1126/science.204.4393.620. [DOI] [PubMed] [Google Scholar]
  14. Roberts G. P., Brill W. J. Genetics and regulation of nitrogen fixation. Annu Rev Microbiol. 1981;35:207–235. doi: 10.1146/annurev.mi.35.100181.001231. [DOI] [PubMed] [Google Scholar]
  15. Smith R. L., Van Baalen C., Tabita F. R. Control of nitrogenase recovery from oxygen inactivation by ammonia in the cyanobacterium Anabaena sp. strain CA (ATCC 33047). J Bacteriol. 1990 May;172(5):2788–2790. doi: 10.1128/jb.172.5.2788-2790.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stadtman E. R. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  17. Strohmeier U., Gerdes C., Lockau W. Proteolysis in heterocyst-forming cyanobacteria: characterization of a further enzyme with trypsin-like specificity, and of a prolyl endopeptidase from Anabaena variabilis. Z Naturforsch C. 1994 Jan-Feb;49(1-2):70–78. doi: 10.1515/znc-1994-1-212. [DOI] [PubMed] [Google Scholar]
  18. Thorneley R. N., Ashby G. A. Oxidation of nitrogenase iron protein by dioxygen without inactivation could contribute to high respiration rates of Azotobacter species and facilitate nitrogen fixation in other aerobic environments. Biochem J. 1989 Jul 1;261(1):181–187. doi: 10.1042/bj2610181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thorneley R. N. Nitrogenase of Klebsiella pneumoniae: an MgATP hydrolysing energy transduction system with similarities to actomyosin and p21 ras. Philos Trans R Soc Lond B Biol Sci. 1992 Apr 29;336(1276):73–82. doi: 10.1098/rstb.1992.0046. [DOI] [PubMed] [Google Scholar]
  20. Wink D. A., Nims R. W., Saavedra J. E., Utermahlen W. E., Jr, Ford P. C. The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6604–6608. doi: 10.1073/pnas.91.14.6604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wood N. B., Haselkorn R. Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol. 1980 Mar;141(3):1375–1385. doi: 10.1128/jb.141.3.1375-1385.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES