Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(3):656–661. doi: 10.1128/jb.178.3.656-661.1996

Dominant negative rat DNA polymerase beta mutants interfere with base excision repair in Saccharomyces cerevisiae.

C A Clairmont 1, J B Sweasy 1
PMCID: PMC177708  PMID: 8550496

Abstract

DNA polymerase beta is one of the smallest known eukaryotic DNA polymerases. This polymerase has been very well characterized in vitro, but its functional role in vivo has yet to be determined. Using a novel competition assay in Escherichia coli, we isolated two DNA polymerase beta dominant negative mutants. When we overexpressed the dominant negative mutant proteins in Saccharomyces cerevisiae, the cells became sensitive to methyl methanesulfonate. Interestingly, overexpression of the same polymerase beta mutant proteins did not confer sensitivity to UV damage, strongly suggesting that the mutant proteins interfere with the process of base excision repair but not nucleotide excision repair in S. cerevisiae. Our data implicate a role for polymerase IV, the S. cerevisiae polymerase beta homolog, in base excision repair in S. cerevisiae.

Full Text

The Full Text of this article is available as a PDF (374.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbotts J., SenGupta D. N., Zmudzka B., Widen S. G., Notario V., Wilson S. H. Expression of human DNA polymerase beta in Escherichia coli and characterization of the recombinant enzyme. Biochemistry. 1988 Feb 9;27(3):901–909. doi: 10.1021/bi00403a010. [DOI] [PubMed] [Google Scholar]
  2. Blank A., Kim B., Loeb L. A. DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9047–9051. doi: 10.1073/pnas.91.19.9047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bork P., Ouzounis C., Sander C., Scharf M., Schneider R., Sonnhammer E. Comprehensive sequence analysis of the 182 predicted open reading frames of yeast chromosome III. Protein Sci. 1992 Dec;1(12):1677–1690. doi: 10.1002/pro.5560011216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casas-Finet J. R., Kumar A., Karpel R. L., Wilson S. H. Mammalian DNA polymerase beta: characterization of a 16-kDa transdomain fragment containing the nucleic acid-binding activities of the native enzyme. Biochemistry. 1992 Oct 27;31(42):10272–10280. doi: 10.1021/bi00157a014. [DOI] [PubMed] [Google Scholar]
  5. Date T., Yamaguchi M., Hirose F., Nishimoto Y., Tanihara K., Matsukage A. Expression of active rat DNA polymerase beta in Escherichia coli. Biochemistry. 1988 Apr 19;27(8):2983–2990. doi: 10.1021/bi00408a048. [DOI] [PubMed] [Google Scholar]
  6. Dresler S. L., Lieberman M. W. Identification of DNA polymerases involved in DNA excision repair in diploid human fibroblasts. J Biol Chem. 1983 Aug 25;258(16):9990–9994. [PubMed] [Google Scholar]
  7. Fornace A. J., Jr, Zmudzka B., Hollander M. C., Wilson S. H. Induction of beta-polymerase mRNA by DNA-damaging agents in Chinese hamster ovary cells. Mol Cell Biol. 1989 Feb;9(2):851–853. doi: 10.1128/mcb.9.2.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gu H., Marth J. D., Orban P. C., Mossmann H., Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. doi: 10.1126/science.8016642. [DOI] [PubMed] [Google Scholar]
  9. Hammond R. A., McClung J. K., Miller M. R. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: evidence that DNA polymerases delta and beta are involved in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine. Biochemistry. 1990 Jan 9;29(1):286–291. doi: 10.1021/bi00453a039. [DOI] [PubMed] [Google Scholar]
  10. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  11. Husain I., Morton B. S., Beard W. A., Singhal R. K., Prasad R., Wilson S. H., Besterman J. M. Specific inhibition of DNA polymerase beta by its 14 kDa domain: role of single- and double-stranded DNA binding and 5'-phosphate recognition. Nucleic Acids Res. 1995 May 11;23(9):1597–1603. doi: 10.1093/nar/23.9.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kupiec M., Simchen G. DNA-repair characterization of cdc40-1, a cell-cycle mutant of Saccharomyces cerevisiae. Mutat Res. 1986 Aug;162(1):33–40. doi: 10.1016/0027-5107(86)90068-0. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Leem S. H., Ropp P. A., Sugino A. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair. Nucleic Acids Res. 1994 Aug 11;22(15):3011–3017. doi: 10.1093/nar/22.15.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miller M. R., Lui L. H. Participation of different DNA polymerases in mammalian DNA repair synthesis is not related to "patch size". Biochem Biophys Res Commun. 1982 Oct 29;108(4):1676–1682. doi: 10.1016/s0006-291x(82)80103-4. [DOI] [PubMed] [Google Scholar]
  16. Prasad R., Widen S. G., Singhal R. K., Watkins J., Prakash L., Wilson S. H. Yeast open reading frame YCR14C encodes a DNA beta-polymerase-like enzyme. Nucleic Acids Res. 1993 Nov 25;21(23):5301–5307. doi: 10.1093/nar/21.23.5301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  18. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  19. Shimizu K., Santocanale C., Ropp P. A., Longhese M. P., Plevani P., Lucchini G., Sugino A. Purification and characterization of a new DNA polymerase from budding yeast Saccharomyces cerevisiae. A probable homolog of mammalian DNA polymerase beta. J Biol Chem. 1993 Dec 25;268(36):27148–27153. [PubMed] [Google Scholar]
  20. Singhal R. K., Prasad R., Wilson S. H. DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J Biol Chem. 1995 Jan 13;270(2):949–957. doi: 10.1074/jbc.270.2.949. [DOI] [PubMed] [Google Scholar]
  21. Singhal R. K., Wilson S. H. Short gap-filling synthesis by DNA polymerase beta is processive. J Biol Chem. 1993 Jul 25;268(21):15906–15911. [PubMed] [Google Scholar]
  22. Sweasy J. B., Loeb L. A. Detection and characterization of mammalian DNA polymerase beta mutants by functional complementation in Escherichia coli. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4626–4630. doi: 10.1073/pnas.90.10.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sweasy J. B., Loeb L. A. Mammalian DNA polymerase beta can substitute for DNA polymerase I during DNA replication in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1407–1410. [PubMed] [Google Scholar]
  24. Sweasy J. B., Yoon M. S. Characterization of DNA polymerase beta mutants with amino acid substitutions located in the C-terminal portion of the enzyme. Mol Gen Genet. 1995 Jul 28;248(2):217–224. doi: 10.1007/BF02190803. [DOI] [PubMed] [Google Scholar]
  25. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  26. Wang T. S., Korn D. Specificity of the catalytic interaction of human DNA polymerase beta with nucleic acid substrates. Biochemistry. 1982 Mar 30;21(7):1597–1608. doi: 10.1021/bi00536a021. [DOI] [PubMed] [Google Scholar]
  27. Wang Z., Wu X., Friedberg E. C. DNA repair synthesis during base excision repair in vitro is catalyzed by DNA polymerase epsilon and is influenced by DNA polymerases alpha and delta in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Feb;13(2):1051–1058. doi: 10.1128/mcb.13.2.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Witkin E. M., Roegner-Maniscalco V. Overproduction of DnaE protein (alpha subunit of DNA polymerase III) restores viability in a conditionally inviable Escherichia coli strain deficient in DNA polymerase I. J Bacteriol. 1992 Jun;174(12):4166–4168. doi: 10.1128/jb.174.12.4166-4168.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES