Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(3):697–700. doi: 10.1128/jb.178.3.697-700.1996

Mutants of Myxococcus xanthus dsp defective in fibril binding.

B Y Chang 1, M Dworkin 1
PMCID: PMC177714  PMID: 8550502

Abstract

The dsp mutant of Myxococcus xanthus lacks extracellular fibrils and as a result is unable to undergo cohesion, group motility, or development (J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5765-5770, 1983; J. W. Arnold and L. J. Shimkets, J. Bacteriol. 170:5771-5777, 1983; R. M. Behmlander and M. Dworkin, J. Bacteriol. 173:7810-7821, 1991; L. J. Shimkets, J. Bacteriol. 166:837-841, 1986; L. J. Shimkets, J. Bacteriol. 166:842-848, 1986). However, cohesion and development can be phenotypically restored by the addition of isolated fibrils (R. M. Behmlander, Ph.D. thesis, University of Minnesota, Minneapolis, 1994; B.-Y. Chang and M. Dworkin, J. Bacteriol. 176:7190-7196, 1994). As part of our attempts to examine the interaction of fibrils and cells of M. xanthus, we have isolated a series of secondary mutants of M. xanthus dsp in which cohesion, unlike that of the parent strain, could not be rescued by the addition of isolated fibrils. Cells of M. xanthus dsp were mutagenized either by ethyl methanesulfonate or by Tn5 insertions. Mutagenized cultures were enriched by selection of those cells that could not be rescued, i.e., that failed to cohere in the presence of isolated fibrils. Seven mutants of M. xanthus dsp, designated fbd mutants, were isolated from 6,983 colonies; these represent putative fibril receptor-minus mutants. The fbd mutants, like the parent dsp mutant, still lacked fibrils, but displayed a number of unexpected properties. They regained group motility and the ability to aggregate but not the ability to form mature fruiting bodies. In addition, they partially regained the ability to form myxospores. The fbd mutant was backcrossed into the dsp mutant by Mx4 transduction. Three independently isolated transconjugants showed essentially the same properties as the fbd mutants--loss of fibril rescue of cohesion, partial restoration of myxospore morphogenesis, and restoration of group motility. These results suggest that the physical presence of fibrils is not necessary for group motility, myxospore formation, or the early aggregative stage of development. We propose, however, that the perception of fibril binding is required for normal social behavior and development. The dsp fbd mutants (from here on referred to as fbd mutants) open the possibility of isolating and characterizing a putative fibril receptor gene.

Full Text

The Full Text of this article is available as a PDF (478.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J. W., Shimkets L. J. Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol. 1988 Dec;170(12):5771–5777. doi: 10.1128/jb.170.12.5771-5777.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold J. W., Shimkets L. J. Inhibition of cell-cell interactions in Myxococcus xanthus by congo red. J Bacteriol. 1988 Dec;170(12):5765–5770. doi: 10.1128/jb.170.12.5765-5770.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Behmlander R. M., Dworkin M. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol. 1994 Oct;176(20):6295–6303. doi: 10.1128/jb.176.20.6295-6303.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Behmlander R. M., Dworkin M. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J Bacteriol. 1991 Dec;173(24):7810–7820. doi: 10.1128/jb.173.24.7810-7820.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bretscher A. P., Kaiser D. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J Bacteriol. 1978 Feb;133(2):763–768. doi: 10.1128/jb.133.2.763-768.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campos J. M., Geisselsoder J., Zusman D. R. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J Mol Biol. 1978 Feb 25;119(2):167–178. doi: 10.1016/0022-2836(78)90431-x. [DOI] [PubMed] [Google Scholar]
  7. Chang B. Y., Dworkin M. Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus. J Bacteriol. 1994 Dec;176(23):7190–7196. doi: 10.1128/jb.176.23.7190-7196.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downard J., Ramaswamy S. V., Kil K. S. Identification of esg, a genetic locus involved in cell-cell signaling during Myxococcus xanthus development. J Bacteriol. 1993 Dec;175(24):7762–7770. doi: 10.1128/jb.175.24.7762-7770.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hodgkin J., Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938–2942. doi: 10.1073/pnas.74.7.2938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ireton K., Rudner D. Z., Siranosian K. J., Grossman A. D. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev. 1993 Feb;7(2):283–294. doi: 10.1101/gad.7.2.283. [DOI] [PubMed] [Google Scholar]
  11. Kaiser D. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5952–5956. doi: 10.1073/pnas.76.11.5952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Connor K. A., Zusman D. R. Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus: use for complementation and recombinational analyses. J Bacteriol. 1983 Jul;155(1):317–329. doi: 10.1128/jb.155.1.317-329.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenbluh A., Eisenbach M. Effect of mechanical removal of pili on gliding motility of Myxococcus xanthus. J Bacteriol. 1992 Aug;174(16):5406–5413. doi: 10.1128/jb.174.16.5406-5413.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shimkets L. J. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J Bacteriol. 1986 Jun;166(3):837–841. doi: 10.1128/jb.166.3.837-841.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shimkets L. J., Rafiee H. CsgA, an extracellular protein essential for Myxococcus xanthus development. J Bacteriol. 1990 Sep;172(9):5299–5306. doi: 10.1128/jb.172.9.5299-5306.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shimkets L. J. Role of cell cohesion in Myxococcus xanthus fruiting body formation. J Bacteriol. 1986 Jun;166(3):842–848. doi: 10.1128/jb.166.3.842-848.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES