Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(3):788–792. doi: 10.1128/jb.178.3.788-792.1996

Expression from the nifB promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA transcriptional activators.

M Drummond 1, J Walmsley 1, C Kennedy 1
PMCID: PMC177726  PMID: 8550514

Abstract

In Azotobacter vinelandii, nifB is required for the activity of all three nitrogenases. Expression of a nifB-lacZ fusion was examined to determine which regulatory gene products are important for nifB expression and how its transcription is regulated in response to metals. In all conditions, expression in A. vinelandii was eliminated by an rpoN mutation, confirming the absolute requirement for sigma N. In the wild type, nifB-lacZ expression was approximately twofold higher in cells grown with Mo than without. Expression was negligible in a nifA mutant grown with Mo but was much higher in Mo-free medium, suggesting that in these conditions, another sigma N-dependent activator was responsible for nifB expression, possibly VnfA, AnfA, or NtrC. Although expression of the nifB-lacZ fusion in A. vinelandii vnfA, anfA, and ntrC mutants was little different from that in the wild type, nifB transcription could be activated by NifA, VnfA, or a truncated form of AnfA in Escherichia coli. The two potential NifA binding sites centered at -87 and -129 bp upstream of the transcription start site each overlapped a VnfA recognition sequence, motifs also found in Azotobacter chroococcum in two exactly conserved regions. Deletion analysis showed that both regions are important for nifB expression. Activation of the full-length promoter by AnfA was impaired by overexpressing the DNA-binding domain of NifA, suggesting that binding of NifA and AnfA can be competitive.

Full Text

The Full Text of this article is available as a PDF (218.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin S., Lambert J. Purification and in vitro activity of a truncated form of ANFA. Transcriptional activator protein of alternative nitrogenase from Azotobacter vinelandii. J Biol Chem. 1994 Jul 8;269(27):18141–18148. [PubMed] [Google Scholar]
  2. Bennett L. T., Cannon F., Dean D. R. Nucleotide sequence and mutagenesis of the nifA gene from Azotobacter vinelandii. Mol Microbiol. 1988 May;2(3):315–321. doi: 10.1111/j.1365-2958.1988.tb00034.x. [DOI] [PubMed] [Google Scholar]
  3. Blanco G., Drummond M., Woodley P., Kennedy C. Sequence and molecular analysis of the nifL gene of Azotobacter vinelandii. Mol Microbiol. 1993 Aug;9(4):869–879. doi: 10.1111/j.1365-2958.1993.tb01745.x. [DOI] [PubMed] [Google Scholar]
  4. Cannon F. C., Dixon R. A., Postgate J. R., Primrose S. B. Chromosomal integration of Klebsiella nitrogen fixation genes in Escherichia coli. J Gen Microbiol. 1974 Jan;80(1):227–239. doi: 10.1099/00221287-80-1-227. [DOI] [PubMed] [Google Scholar]
  5. Charlton W., Cannon W., Buck M. The Klebsiella pneumoniae nifJ promoter: analysis of promoter elements regulating activation by the NifA promoter. Mol Microbiol. 1993 Mar;7(6):1007–1021. doi: 10.1111/j.1365-2958.1993.tb01192.x. [DOI] [PubMed] [Google Scholar]
  6. Contreras A., Drummond M., Bali A., Blanco G., Garcia E., Bush G., Kennedy C., Merrick M. The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria. J Bacteriol. 1991 Dec;173(24):7741–7749. doi: 10.1128/jb.173.24.7741-7749.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frise E., Green A., Drummond M. Chimeric transcriptional activators generated in vivo from VnfA and AnfA of Azotobacter vinelandii: N-terminal domain of AnfA is responsible for dependence on nitrogenase Fe protein. J Bacteriol. 1994 Nov;176(21):6545–6549. doi: 10.1128/jb.176.21.6545-6549.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodrich J. A., Schwartz M. L., McClure W. R. Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res. 1990 Sep 11;18(17):4993–5000. doi: 10.1093/nar/18.17.4993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacob J., Drummond M. Construction of chimeric proteins from the sigma N-associated transcriptional activators VnfA and AnfA of Azotobacter vinelandii shows that the determinants of promoter specificity lie outside the 'recognition' helix of the HTH motif in the C-terminal domain. Mol Microbiol. 1993 Nov;10(4):813–821. doi: 10.1111/j.1365-2958.1993.tb00951.x. [DOI] [PubMed] [Google Scholar]
  10. Joerger R. D., Bishop P. E. Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol. 1988 Apr;170(4):1475–1487. doi: 10.1128/jb.170.4.1475-1487.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joerger R. D., Jacobson M. R., Bishop P. E. Two nifA-like genes required for expression of alternative nitrogenases by Azotobacter vinelandii. J Bacteriol. 1989 Jun;171(6):3258–3267. doi: 10.1128/jb.171.6.3258-3267.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennedy C., Dean D. The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet. 1992 Feb;231(3):494–498. doi: 10.1007/BF00292722. [DOI] [PubMed] [Google Scholar]
  13. Kleiner D., Paul W., Merrick M. J. Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol. 1988 Jul;134(7):1779–1784. doi: 10.1099/00221287-134-7-1779. [DOI] [PubMed] [Google Scholar]
  14. Morett E., Cannon W., Buck M. The DNA-binding domain of the transcriptional activator protein NifA resides in its carboxy terminus, recognises the upstream activator sequences of nif promoters and can be separated from the positive control function of NifA. Nucleic Acids Res. 1988 Dec 23;16(24):11469–11488. doi: 10.1093/nar/16.24.11469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rodríguez-Quiñones F., Bosch R., Imperial J. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol. 1993 May;175(10):2926–2935. doi: 10.1128/jb.175.10.2926-2935.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Santero E., Toukdarian A., Humphrey R., Kennedy C. Identification and characterization of two nitrogen fixation regulatory regions, nifA and nfrX, in Azotobacter vinelandii and Azotobacter chroococcum. Mol Microbiol. 1988 May;2(3):303–314. doi: 10.1111/j.1365-2958.1988.tb00033.x. [DOI] [PubMed] [Google Scholar]
  17. Simon R., Quandt J., Klipp W. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene. 1989 Aug 1;80(1):161–169. doi: 10.1016/0378-1119(89)90262-x. [DOI] [PubMed] [Google Scholar]
  18. Toukdarian A., Kennedy C. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 1986 Feb;5(2):399–407. doi: 10.1002/j.1460-2075.1986.tb04225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walmsley J., Kennedy C. Temperature-Dependent Regulation by Molybdenum and Vanadium of Expression of the Structural Genes Encoding Three Nitrogenases in Azotobacter vinelandii. Appl Environ Microbiol. 1991 Feb;57(2):622–624. doi: 10.1128/aem.57.2.622-624.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Walmsley J., Toukdarian A., Kennedy C. The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol. 1994;162(6):422–429. doi: 10.1007/BF00282107. [DOI] [PubMed] [Google Scholar]
  21. Woodley P., Buck M., Kennedy C. Identification of sequences important for recognition of vnf genes by the VnfA transcriptional activator in Azotobacter vinelandii. FEMS Microbiol Lett. 1996 Jan 15;135(2-3):213–221. doi: 10.1111/j.1574-6968.1996.tb07992.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES