Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(3):846–853. doi: 10.1128/jb.178.3.846-853.1996

Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtilis.

P Nygaard 1, P Duckert 1, H H Saxild 1
PMCID: PMC177734  PMID: 8550522

Abstract

The isolation of mutants defective in adenine metabolism in Bacillus subtilis has provided a tool that has made it possible to investigate the role of adenine deaminase in adenine metabolism in growing cells. Adenine deaminase is the only enzyme that can deaminate adenine compounds in B. subtilis, a reaction which is important for adenine utilization as a purine and also as a nitrogen source. The uptake of adenine is strictly coupled to its further metabolism. Salvaging of adenine is inhibited by the stringent response to amino acid starvation, while the deamination of adenine is not. The level of adenine deaminase was reduced when exogenous guanosine served as the purine source and when glutamine served as the nitrogen source. The enzyme level was essentially the same whether ammonia or purines served as the nitrogen source. Reduced levels were seen on poor carbon sources. The ade gene was cloned, and the nucleotide sequence and mRNA analyses revealed a single-gene operon encoding a 65-kDa protein. By transductional crosses, we have located the ade gene to 130 degrees on the chromosomal map.

Full Text

The Full Text of this article is available as a PDF (304.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Atkinson M. R., Fisher S. H. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J Bacteriol. 1991 Jan;173(1):23–27. doi: 10.1128/jb.173.1.23-27.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson M. R., Wray L. V., Jr, Fisher S. H. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. J Bacteriol. 1990 Sep;172(9):4758–4765. doi: 10.1128/jb.172.9.4758-4765.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beaman T. C., Hitchins A. D., Ochi K., Vasantha N., Endo T., Freese E. Specificity and control of uptake of purines and other compounds in Bacillus subtilis. J Bacteriol. 1983 Dec;156(3):1107–1117. doi: 10.1128/jb.156.3.1107-1117.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berlin R. D., Stadtman E. R. A possible role of purine nucleotide pyrophosphorylases in the regulation of purine uptake by Bacillus subtilis. J Biol Chem. 1966 Jun 10;241(11):2679–2686. [PubMed] [Google Scholar]
  6. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D. C., Collins K. D. Dihydroorotase from Escherichia coli. Substitution of Co(II) for the active site Zn(II). J Biol Chem. 1991 Jan 25;266(3):1597–1604. [PubMed] [Google Scholar]
  8. Buckholz R. G., Cooper T. G. The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast. 1991 Dec;7(9):913–923. doi: 10.1002/yea.320070903. [DOI] [PubMed] [Google Scholar]
  9. Burland V., Plunkett G., 3rd, Daniels D. L., Blattner F. R. DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551–561. doi: 10.1006/geno.1993.1230. [DOI] [PubMed] [Google Scholar]
  10. Clayton C. L., Pallen M. J., Kleanthous H., Wren B. W., Tabaqchali S. Nucleotide sequence of two genes from Helicobacter pylori encoding for urease subunits. Nucleic Acids Res. 1990 Jan 25;18(2):362–362. doi: 10.1093/nar/18.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Danielsen S., Kilstrup M., Barilla K., Jochimsen B., Neuhard J. Characterization of the Escherichia coli codBA operon encoding cytosine permease and cytosine deaminase. Mol Microbiol. 1992 May;6(10):1335–1344. doi: 10.1111/j.1365-2958.1992.tb00854.x. [DOI] [PubMed] [Google Scholar]
  12. Dedonder R. A., Lepesant J. A., Lepesant-Kejzlarová J., Billault A., Steinmetz M., Kunst F. Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis 168. Appl Environ Microbiol. 1977 Apr;33(4):989–993. doi: 10.1128/aem.33.4.989-993.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Deeley M. C. Adenine deaminase and adenine utilization in Saccharomyces cerevisiae. J Bacteriol. 1992 May;174(10):3102–3110. doi: 10.1128/jb.174.10.3102-3110.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Endo T., Uratani B., Freese E. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J Bacteriol. 1983 Jul;155(1):169–179. doi: 10.1128/jb.155.1.169-179.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freese E., Heinze J. E., Galliers E. M. Partial purine deprivation causes sporulation of Bacillus subtilis in the presence of excess ammonia, glucose and phosphate. J Gen Microbiol. 1979 Nov;115(1):193–205. doi: 10.1099/00221287-115-1-193. [DOI] [PubMed] [Google Scholar]
  16. Gabellieri E., Bernini S., Piras L., Cioni P., Balestreri E., Cercignani G., Felicioli R. Purification, stability and kinetic properties of highly purified adenosine deaminase from Bacillus cereus NCIB 8122. Biochim Biophys Acta. 1986 Dec 10;884(3):490–496. doi: 10.1016/0304-4165(86)90199-6. [DOI] [PubMed] [Google Scholar]
  17. Ghim S. Y., Nielsen P., Neuhard J. Molecular characterization of pyrimidine biosynthesis genes from the thermophile Bacillus caldolyticus. Microbiology. 1994 Mar;140(Pt 3):479–491. doi: 10.1099/00221287-140-3-479. [DOI] [PubMed] [Google Scholar]
  18. Hove-Jensen B., Nygaard P. Role of guanosine kinase in the utilization of guanosine for nucleotide synthesis in Escherichia coli. J Gen Microbiol. 1989 May;135(5):1263–1273. doi: 10.1099/00221287-135-5-1263. [DOI] [PubMed] [Google Scholar]
  19. Jensen K. F., Houlberg U., Nygaard P. Thin-layer chromatographic methods to isolate 32P-labeled 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP): determination of cellular PRPP pools and assay of PRPP synthetase activity. Anal Biochem. 1979 Oct 1;98(2):254–263. doi: 10.1016/0003-2697(79)90138-6. [DOI] [PubMed] [Google Scholar]
  20. Jochimsen B., Nygaard P., Vestergaard T. Location on the chromosome of Escherichia coli of genes governing purine metabolism. Adenosine deaminase (add), guanosine kinase (gsk) and hypoxanthine phosphoribosyltransferase (hpt). Mol Gen Genet. 1975 Dec 30;143(1):85–91. doi: 10.1007/BF00269424. [DOI] [PubMed] [Google Scholar]
  21. Kidder G. W., Nolan L. L. Adenine aminohydrolase: occurrence and possible significance in trypanosomid flagellates. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3670–3672. doi: 10.1073/pnas.76.8.3670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kocharian Sh M., Kocharian A. M., Meliksetian G. O., Akopian Zh I. Mutanty Escherichia coli K-12, usvaivaiushchie adenin po novomu metabolicheskomu puti. Genetika. 1982;18(6):906–915. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. doi: 10.1093/nar/21.13.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laten H. M., Valentine P. J., van Kast C. A. Adenosine accumulation in Saccharomyces cerevisiae cultured in medium containing low levels of adenine. J Bacteriol. 1986 Jun;166(3):763–768. doi: 10.1128/jb.166.3.763-768.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Love E., D'Ambrosio D., Brown N. C. Mapping of the gene specifying DNA polymerase III of Bacillus subtilis. Mol Gen Genet. 1976 Mar 30;144(3):313–321. doi: 10.1007/BF00341730. [DOI] [PubMed] [Google Scholar]
  27. Martinussen J., Glaser P., Andersen P. S., Saxild H. H. Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis. J Bacteriol. 1995 Jan;177(1):271–274. doi: 10.1128/jb.177.1.271-274.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Merkler D. J., Wali A. S., Taylor J., Schramm V. L. AMP deaminase from yeast. Role in AMP degradation, large scale purification, and properties of the native and proteolyzed enzyme. J Biol Chem. 1989 Dec 15;264(35):21422–21430. [PubMed] [Google Scholar]
  29. Meyer S. L., Kvalnes-Krick K. L., Schramm V. L. Characterization of AMD, the AMP deaminase gene in yeast. Production of amd strain, cloning, nucleotide sequence, and properties of the protein. Biochemistry. 1989 Oct 31;28(22):8734–8743. doi: 10.1021/bi00448a009. [DOI] [PubMed] [Google Scholar]
  30. Mobley H. L., Hausinger R. P. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev. 1989 Mar;53(1):85–108. doi: 10.1128/mr.53.1.85-108.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mura U., Di Martino D., Leporini C., Gini S., Camici M., Ipata P. L. Phosphorylase-mediated mobilization of the amino group of adenine in Bacillus cereus. Arch Biochem Biophys. 1987 Dec;259(2):466–472. doi: 10.1016/0003-9861(87)90513-3. [DOI] [PubMed] [Google Scholar]
  32. Nilsson B., Uhlén M., Josephson S., Gatenbeck S., Philipson L. An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis. Nucleic Acids Res. 1983 Nov 25;11(22):8019–8030. doi: 10.1093/nar/11.22.8019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nölling J., van Eeden F. J., de Vos W. M. Distribution and characterization of plasmid-related sequences in the chromosomal DNA of different thermophilic Methanobacterium strains. Mol Gen Genet. 1993 Jul;240(1):81–91. doi: 10.1007/BF00276887. [DOI] [PubMed] [Google Scholar]
  34. Pihl T. D., Sharma S., Reeve J. N. Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum delta H. J Bacteriol. 1994 Oct;176(20):6384–6391. doi: 10.1128/jb.176.20.6384-6391.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Porter D. J., Austin E. A. Cytosine deaminase. The roles of divalent metal ions in catalysis. J Biol Chem. 1993 Nov 15;268(32):24005–24011. [PubMed] [Google Scholar]
  36. Quinn C. L., Stephenson B. T., Switzer R. L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem. 1991 May 15;266(14):9113–9127. [PubMed] [Google Scholar]
  37. Rouf M. A., Lomprey R. F., Jr Degradation of uric acid by certain aerobic bacteria. J Bacteriol. 1968 Sep;96(3):617–622. doi: 10.1128/jb.96.3.617-622.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Saxild H. H., Jacobsen J. H., Nygaard P. Functional analysis of the Bacillus subtilis purT gene encoding formate-dependent glycinamide ribonucleotide transformylase. Microbiology. 1995 Sep;141(Pt 9):2211–2218. doi: 10.1099/13500872-141-9-2211. [DOI] [PubMed] [Google Scholar]
  40. Saxild H. H., Nygaard P. Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol. 1987 Jul;169(7):2977–2983. doi: 10.1128/jb.169.7.2977-2983.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Saxild H. H., Nygaard P. Regulation of levels of purine biosynthetic enzymes in Bacillus subtilis: effects of changing purine nucleotide pools. J Gen Microbiol. 1991 Oct;137(10):2387–2394. doi: 10.1099/00221287-137-10-2387. [DOI] [PubMed] [Google Scholar]
  42. Solnick J. V., O'Rourke J., Lee A., Tompkins L. S. Molecular analysis of urease genes from a newly identified uncultured species of Helicobacter. Infect Immun. 1994 May;62(5):1631–1638. doi: 10.1128/iai.62.5.1631-1638.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Staal S. P., Hoch J. A. Conditional dihydrostreptomycin resistance in Bacillus subtilis. J Bacteriol. 1972 Apr;110(1):202–207. doi: 10.1128/jb.110.1.202-207.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suárez T., Oestreicher N., Kelly J., Ong G., Sankarsingh T., Scazzocchio C. The uaY positive control gene of Aspergillus nidulans: fine structure, isolation of constitutive mutants and reversion patterns. Mol Gen Genet. 1991 Dec;230(3):359–368. doi: 10.1007/BF00280292. [DOI] [PubMed] [Google Scholar]
  45. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  46. Vogels G. D., Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriol Rev. 1976 Jun;40(2):403–468. doi: 10.1128/br.40.2.403-468.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Woods R. A., Roberts D. G., Stein D. S., Filpula D. Adenine phosphoribosyltransferase mutants in Saccharomyces cerevisiae. J Gen Microbiol. 1984 Oct;130(10):2629–2637. doi: 10.1099/00221287-130-10-2629. [DOI] [PubMed] [Google Scholar]
  48. Worrell V. E., Nagle D. P., Jr Genetic and physiological characterization of the purine salvage pathway in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol. 1990 Jun;172(6):3328–3334. doi: 10.1128/jb.172.6.3328-3334.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wray L. V., Jr, Fisher S. H. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. J Bacteriol. 1994 Sep;176(17):5466–5473. doi: 10.1128/jb.176.17.5466-5473.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES