Abstract
The single cysteine in the ArsB protein subunit of the arsenite resistance pump was changed to serine and alanine residues. Resistance in cells expressing the two mutant arsB genes was the same as in the wild type, and the serine substitution had no effect on the arsenite transport properties. These results eliminate possible thiol chemistry in translocation. Thus, the pump uses soft metal chemistry for metalloactivation and nonmetal chemistry for oxyanion transport.
Full Text
The Full Text of this article is available as a PDF (174.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
- Broome-Smith J. K., Spratt B. G. A vector for the construction of translational fusions to TEM beta-lactamase and the analysis of protein export signals and membrane protein topology. Gene. 1986;49(3):341–349. doi: 10.1016/0378-1119(86)90370-7. [DOI] [PubMed] [Google Scholar]
- Carlin A., Shi W., Dey S., Rosen B. P. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol. 1995 Feb;177(4):981–986. doi: 10.1128/jb.177.4.981-986.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung C. T., Niemela S. L., Miller R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. doi: 10.1073/pnas.86.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
- Dey S., Dou D., Rosen B. P. ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli. J Biol Chem. 1994 Oct 14;269(41):25442–25446. [PubMed] [Google Scholar]
- Dey S., Rosen B. P. Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol. 1995 Jan;177(2):385–389. doi: 10.1128/jb.177.2.385-389.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen B. P., Bhattacharjee H., Shi W. Mechanisms of metalloregulation of an anion-translocating ATPase. J Bioenerg Biomembr. 1995 Feb;27(1):85–91. doi: 10.1007/BF02110335. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi W., Wu J., Rosen B. P. Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem. 1994 Aug 5;269(31):19826–19829. [PubMed] [Google Scholar]
- Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
- Wu J., Rosen B. P. Metalloregulated expression of the ars operon. J Biol Chem. 1993 Jan 5;268(1):52–58. [PubMed] [Google Scholar]
- Wu J., Tisa L. S., Rosen B. P. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J Biol Chem. 1992 Jun 25;267(18):12570–12576. [PubMed] [Google Scholar]
