Abstract
An active preparation of the membrane-associated methane monooxygenase (pMMO) from Methylococcus capsulatus Bath was isolated by ion-exchange and hydrophobic interaction chromatography using dodecyl beta-D-maltoside as the detergent. The active preparation consisted of three major polypeptides with molecular masses of 47,000, 27,000, and 25,000 Da. Two of the three polypeptides (those with molecular masses of 47,000 and 27,000 Da) were identified as the polypeptides induced when cells expressing the soluble MMO are switched to culture medium in which the pMMO is expressed. The 27,000-Da polypeptide was identified as the acetylene-binding protein. The active enzyme complex contained 2.5 iron atoms and 14.5 copper atoms per 99,000 Da. The electron paramagnetic resonance spectrum of the enzyme showed evidence for a type 2 copper center (g perpendicular = 2.057, g parallel = 2.24, and magnitude of A parallel = 172 G), a weak high-spin iron signal (g = 6.0), and a broad low-field (g = 12.5) signal. Treatment of the pMMO with nitric oxide produced the ferrous-nitric oxide derivative observed in the membrane fraction of cells expressing the pMMO. When duroquinol was used as a reductant, the specific activity of the purified enzyme was 11.1 nmol of propylene oxidized.min-1.mg of protein-1, which accounted for approximately 30% of the cell-free propylene oxidation activity. The activity was stimulated by ferric and cupric metal ions in addition to the cytochrome b-specific inhibitors myxothiazol and 2-heptyl-4-hydroxyquinoline-N-oxide.
Full Text
The Full Text of this article is available as a PDF (407.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arciero D. M., Lipscomb J. D. Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem. 1986 Feb 15;261(5):2170–2178. [PubMed] [Google Scholar]
- Arciero D. M., Lipscomb J. D., Huynh B. H., Kent T. A., Münck E. EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment. J Biol Chem. 1983 Dec 25;258(24):14981–14991. [PubMed] [Google Scholar]
- Beinert H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem. 1983 Jun;131(2):373–378. doi: 10.1016/0003-2697(83)90186-0. [DOI] [PubMed] [Google Scholar]
- Bergmann D. J., Hooper A. B. Sequence of the gene, amoB, for the 43-kDa polypeptide of ammonia monoxygenase of Nitrosomonas europaea. Biochem Biophys Res Commun. 1994 Oct 28;204(2):759–762. doi: 10.1006/bbrc.1994.2524. [DOI] [PubMed] [Google Scholar]
- Berry E. A., Trumpower B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal Biochem. 1987 Feb 15;161(1):1–15. doi: 10.1016/0003-2697(87)90643-9. [DOI] [PubMed] [Google Scholar]
- Brusseau G. A., Tsien H. C., Hanson R. S., Wackett L. P. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation. 1990;1(1):19–29. doi: 10.1007/BF00117048. [DOI] [PubMed] [Google Scholar]
- Cardy D. L., Laidler V., Salmond G. P., Murrell J. C. Molecular analysis of the methane monooxygenase (MMO) gene cluster of Methylosinus trichosporium OB3b. Mol Microbiol. 1991 Feb;5(2):335–342. doi: 10.1111/j.1365-2958.1991.tb02114.x. [DOI] [PubMed] [Google Scholar]
- Cheesman M. R., Watmough N. J., Pires C. A., Turner R., Brittain T., Gennis R. B., Greenwood C., Thomson A. J. Cytochrome bo from Escherichia coli: identification of haem ligands and reaction of the reduced enzyme with carbon monoxide. Biochem J. 1993 Feb 1;289(Pt 3):709–718. doi: 10.1042/bj2890709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiSpirito A. A. Soluble cytochromes c from Methylomonas A4. Methods Enzymol. 1990;188:289–297. doi: 10.1016/0076-6879(90)88045-c. [DOI] [PubMed] [Google Scholar]
- Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
- Fox B. G., Froland W. A., Dege J. E., Lipscomb J. D. Methane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph. J Biol Chem. 1989 Jun 15;264(17):10023–10033. [PubMed] [Google Scholar]
- Fox B. G., Surerus K. K., Münck E., Lipscomb J. D. Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Mössbauer and EPR studies. J Biol Chem. 1988 Aug 5;263(22):10553–10556. [PubMed] [Google Scholar]
- Galpin J. R., Veldink G. A., Vliegenthart J. F., Boldingh J. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim Biophys Acta. 1978 Oct 23;536(2):356–362. doi: 10.1016/0005-2795(78)90494-4. [DOI] [PubMed] [Google Scholar]
- Green J., Dalton H. Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity. J Biol Chem. 1985 Dec 15;260(29):15795–15801. [PubMed] [Google Scholar]
- Green J., Dalton H. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J Biol Chem. 1989 Oct 25;264(30):17698–17703. [PubMed] [Google Scholar]
- Hendrich M. P., Debrunner P. G. Integer-spin electron paramagnetic resonance of iron proteins. Biophys J. 1989 Sep;56(3):489–506. doi: 10.1016/S0006-3495(89)82696-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hyman M. R., Arp D. J. 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem. 1992 Jan 25;267(3):1534–1545. [PubMed] [Google Scholar]
- Hyman M. R., Arp D. J. The small-scale production of [U-14C]acetylene from Ba14CO3: application to labeling of ammonia monooxygenase in autotrophic nitrifying bacteria. Anal Biochem. 1990 Nov 1;190(2):348–353. doi: 10.1016/0003-2697(90)90206-o. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lidstrom M. E. Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek. 1988;54(3):189–199. doi: 10.1007/BF00443577. [DOI] [PubMed] [Google Scholar]
- Lipscomb J. D. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol. 1994;48:371–399. doi: 10.1146/annurev.mi.48.100194.002103. [DOI] [PubMed] [Google Scholar]
- Lund J., Dalton H. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH:acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur J Biochem. 1985 Mar 1;147(2):291–296. doi: 10.1111/j.1432-1033.1985.tb08749.x. [DOI] [PubMed] [Google Scholar]
- Mak A. S., Jones B. L. Application of S-pyridylethylation of cysteine to the sequence analysis of proteins. Anal Biochem. 1978 Feb;84(2):432–440. doi: 10.1016/0003-2697(78)90061-1. [DOI] [PubMed] [Google Scholar]
- Malmström B. G., Reinhammar B., Vänngård T. The state of copper in stellacyanin and laccase from the lacquer tree Rhus vernicifera. Biochim Biophys Acta. 1970 Apr 7;205(1):48–57. doi: 10.1016/0005-2728(70)90060-5. [DOI] [PubMed] [Google Scholar]
- McDonnel A., Staehelin L. A. Detection of cytochrome f, a c-class cytochrome, with diaminobenzidine polyacrylamide gels. Anal Biochem. 1981 Oct;117(1):40–44. doi: 10.1016/0003-2697(81)90688-6. [DOI] [PubMed] [Google Scholar]
- Morse R. H., Chan S. I. Electron paramagnetic resonance studies of nitrosyl ferrous heme complexes. Determination of an equilibrium between two conformations. J Biol Chem. 1980 Aug 25;255(16):7876–7882. [PubMed] [Google Scholar]
- Nelson M. J. The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH, and ethanol effects on the active-site iron. J Biol Chem. 1987 Sep 5;262(25):12137–12142. [PubMed] [Google Scholar]
- Nguyen H. H., Shiemke A. K., Jacobs S. J., Hales B. J., Lidstrom M. E., Chan S. I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1994 May 27;269(21):14995–15005. [PubMed] [Google Scholar]
- Patel R. N., Savas J. C. Purification and properties of the hydroxylase component of methane monooxygenase. J Bacteriol. 1987 May;169(5):2313–2317. doi: 10.1128/jb.169.5.2313-2317.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J., Cooper J. M. Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem. 1970 Feb;33(2):390–399. doi: 10.1016/0003-2697(70)90310-6. [DOI] [PubMed] [Google Scholar]
- Rupp H., Cammack R., Hartmann H. J., Weser U. Oxidation-reduction reactions of copper-thiolate centres in Cu-thionein. Biochim Biophys Acta. 1979 Jun 19;578(2):462–475. doi: 10.1016/0005-2795(79)90176-4. [DOI] [PubMed] [Google Scholar]
- Rupp H., Weser U. Conversion of metallothionein into Cu-thionein, the possible low molecular weight form of neonatal hepatic mitochondrocuprein. FEBS Lett. 1974 Aug 30;44(3):293–297. doi: 10.1016/0014-5793(74)81161-0. [DOI] [PubMed] [Google Scholar]
- Salerno J. C., Siedow J. N. The nature of the nitric oxide complexes of lipoxygenase. Biochim Biophys Acta. 1979 Jul 25;579(1):246–251. doi: 10.1016/0005-2795(79)90104-1. [DOI] [PubMed] [Google Scholar]
- Semrau J. D., Chistoserdov A., Lebron J., Costello A., Davagnino J., Kenna E., Holmes A. J., Finch R., Murrell J. C., Lidstrom M. E. Particulate methane monooxygenase genes in methanotrophs. J Bacteriol. 1995 Jun;177(11):3071–3079. doi: 10.1128/jb.177.11.3071-3079.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Semrau J. D., Zolandz D., Lidstrom M. E., Chan S. I. The role of copper in the pMMO of Methylococcus capsulatus bath: a structural vs. catalytic function. J Inorg Biochem. 1995 Jun;58(4):235–244. doi: 10.1016/0162-0134(94)00056-g. [DOI] [PubMed] [Google Scholar]
- Tonge G. M., Harrison D. E., Higgins I. J. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem J. 1977 Feb 1;161(2):333–344. doi: 10.1042/bj1610333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMS J. N., Jr A METHOD FOR THE SIMULTANEOUS QUANTITATIVE ESTIMATION OF CYTOCHROMES A, B, C1, AND C IN MITOCHONDRIA. Arch Biochem Biophys. 1964 Sep;107:537–543. doi: 10.1016/0003-9861(64)90313-3. [DOI] [PubMed] [Google Scholar]
- Woodland M. P., Dalton H. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1984 Jan 10;259(1):53–59. [PubMed] [Google Scholar]
- Zahn J. A., Duncan C., DiSpirito A. A. Oxidation of hydroxylamine by cytochrome P-460 of the obligate methylotroph Methylococcus capsulatus Bath. J Bacteriol. 1994 Oct;176(19):5879–5887. doi: 10.1128/jb.176.19.5879-5887.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Jagow G., Link T. A. Use of specific inhibitors on the mitochondrial bc1 complex. Methods Enzymol. 1986;126:253–271. doi: 10.1016/s0076-6879(86)26026-7. [DOI] [PubMed] [Google Scholar]