Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(4):1030–1038. doi: 10.1128/jb.178.4.1030-1038.1996

Isolation and expression of the Rhodobacter sphaeroides gene (pgsA) encoding phosphatidylglycerophosphate synthase.

S C Dryden 1, W Dowhan 1
PMCID: PMC177762  PMID: 8576035

Abstract

The Rhodobacter sphaeroides pgsA gene (pgsARs), encoding phosphatidylglycerophosphate synthase (PgsARs), was cloned, sequenced, and expressed in both R. sphaeroides and Escherichia coli. As in E. coli, pgsARs is located immediately downstream of the uvrC gene. Comparison of the deduced amino acid sequences revealed 41% identity and 69% similarity to the pgsA gene of E. coli, with similar homology to the products of the putative pgsA genes of several other bacteria. Comparison of the amino acid sequences of a number of enzymes involved in CDP-diacylglycerol-dependent phosphatidyltransfer identified a highly conserved region also found in PgsARs. The pgsARs gene carried on multicopy plasmids was expressed in R. sphaeroides under the direction of its own promoter, the R. sphaeroides rrnB promoter, and the E. coli lac promoter, and this resulted in significant overproduction of PgsARs activity. Expression of PgsARs activity in E. coli occurred only with the E. coli lac promoter. PgsARs could functionally replace the E. coli enzyme in both a point mutant and a null mutant of E. coli pgsA. Overexpression of PgsARs in either E. coli or R. sphaeroides did not have dramatic effects on the phospholipid composition of the cells, suggesting regulation of the activity of this enzyme in both organisms.

Full Text

The Full Text of this article is available as a PDF (435.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arondel V., Benning C., Somerville C. R. Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J Biol Chem. 1993 Jul 25;268(21):16002–16008. [PubMed] [Google Scholar]
  2. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benning C., Somerville C. R. Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol. 1992 Apr;174(7):2352–2360. doi: 10.1128/jb.174.7.2352-2360.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogdanov M., Dowhan W. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J Biol Chem. 1995 Jan 13;270(2):732–739. doi: 10.1074/jbc.270.2.732. [DOI] [PubMed] [Google Scholar]
  5. Cain B. D., Deal C. D., Fraley R. T., Kaplan S. In vivo intermembrane transfer of phospholipids in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J Bacteriol. 1981 Mar;145(3):1154–1166. doi: 10.1128/jb.145.3.1154-1166.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cain B. D., Donohue T. J., Shepherd W. D., Kaplan S. Localization of phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides. J Biol Chem. 1984 Jan 25;259(2):942–948. [PubMed] [Google Scholar]
  7. Cain B. D., Singer M., Donohue T. J., Kaplan S. In vivo metabolic intermediates of phospholipid biosynthesis in Rhodopseudomonas sphaeroides. J Bacteriol. 1983 Oct;156(1):375–385. doi: 10.1128/jb.156.1.375-385.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carman G. M., Fischl A. S. Phosphatidylinositol synthase from yeast. Methods Enzymol. 1992;209:305–312. doi: 10.1016/0076-6879(92)09038-5. [DOI] [PubMed] [Google Scholar]
  9. Clancey C. J., Chang S. C., Dowhan W. Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant. J Biol Chem. 1993 Nov 25;268(33):24580–24590. [PubMed] [Google Scholar]
  10. DeChavigny A., Heacock P. N., Dowhan W. Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem. 1991 Mar 15;266(8):5323–5332. [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Donohue T. J., Cain B. D., Kaplan S. Alterations in the phospholipid composition of Rhodopseudomonas sphaeroides and other bacteria induced by Tris. J Bacteriol. 1982 Nov;152(2):595–606. doi: 10.1128/jb.152.2.595-606.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dowhan W. Phosphatidylglycerophosphate synthase from Escherichia coli. Methods Enzymol. 1992;209:313–321. doi: 10.1016/0076-6879(92)09039-6. [DOI] [PubMed] [Google Scholar]
  14. Dowhan W. Phosphatidylserine synthase from Escherichia coli. Methods Enzymol. 1992;209:287–298. doi: 10.1016/0076-6879(92)09036-3. [DOI] [PubMed] [Google Scholar]
  15. Dowhan W. Strategies for generating and utilizing phospholipid synthesis mutants in Escherichia coli. Methods Enzymol. 1992;209:7–20. doi: 10.1016/0076-6879(92)09004-m. [DOI] [PubMed] [Google Scholar]
  16. Dryden S. C., Kaplan S. Identification of cis-acting regulatory regions upstream of the rRNA operons of Rhodobacter sphaeroides. J Bacteriol. 1993 Oct;175(20):6392–6402. doi: 10.1128/jb.175.20.6392-6402.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dryden S. C., Kaplan S. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 1990 Dec 25;18(24):7267–7277. doi: 10.1093/nar/18.24.7267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fine J. B., Sprecher H. Unidimensional thin-layer chromatography of phospholipids on boric acid-impregnated plates. J Lipid Res. 1982 May;23(4):660–663. [PubMed] [Google Scholar]
  20. Gan K., Sankaran K., Williams M. G., Aldea M., Rudd K. E., Kushner S. R., Wu H. C. The umpA gene of Escherichia coli encodes phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (lgt) and regulates thymidylate synthase levels through translational coupling. J Bacteriol. 1995 Apr;177(7):1879–1882. doi: 10.1128/jb.177.7.1879-1882.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  22. Gopalakrishnan A. S., Chen Y. C., Temkin M., Dowhan W. Structure and expression of the gene locus encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Biol Chem. 1986 Jan 25;261(3):1329–1338. [PubMed] [Google Scholar]
  23. Hawrot E., Kennedy E. P. Phospholipid composition and membrane function in phosphatidylserine decarboxylase mutants of Escherichia coli. J Biol Chem. 1978 Nov 25;253(22):8213–8220. [PubMed] [Google Scholar]
  24. Heacock P. N., Dowhan W. Alteration of the phospholipid composition of Escherichia coli through genetic manipulation. J Biol Chem. 1989 Sep 5;264(25):14972–14977. [PubMed] [Google Scholar]
  25. Heacock P. N., Dowhan W. Construction of a lethal mutation in the synthesis of the major acidic phospholipids of Escherichia coli. J Biol Chem. 1987 Sep 25;262(27):13044–13049. [PubMed] [Google Scholar]
  26. Hirabayashi T., Larson T. J., Dowhan W. Membrane-associated phosphatidylglycerophosphate synthetase from Escherichia coli: purification by substrate affinity chromatography on cytidine 5'-diphospho-1,2-diacyl-sn-glycerol sepharose. Biochemistry. 1976 Nov 30;15(24):5205–5211. doi: 10.1021/bi00669a002. [DOI] [PubMed] [Google Scholar]
  27. Hjelmstad R. H., Bell R. M. sn-1,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Nucleotide sequence of the EPT1 gene and comparison of the CPT1 and EPT1 gene products. J Biol Chem. 1991 Mar 15;266(8):5094–5103. [PubMed] [Google Scholar]
  28. Jackson B. J., Gennity J. M., Kennedy E. P. Regulation of the balanced synthesis of membrane phospholipids. Experimental test of models for regulation in Escherichia coli. J Biol Chem. 1986 Oct 15;261(29):13464–13468. [PubMed] [Google Scholar]
  29. Kaplan S., Cain B. D., Donohue T. J., Shepherd W. D., Yen G. S. Biosynthesis of the photosynthetic membranes of Rhodopseudomonas sphaeroides. J Cell Biochem. 1983;22(1):15–29. doi: 10.1002/jcb.240220103. [DOI] [PubMed] [Google Scholar]
  30. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  31. Kiley P. J., Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev. 1988 Mar;52(1):50–69. doi: 10.1128/mr.52.1.50-69.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kontinen V. P., Tokuda H. Overexpression of phosphatidylglycerophosphate synthase restores protein translocation in a secG deletion mutant of Escherichia coli at low temperature. FEBS Lett. 1995 May 8;364(2):157–160. doi: 10.1016/0014-5793(95)00378-m. [DOI] [PubMed] [Google Scholar]
  33. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M., 2nd, Peterson K. M. pBBR1MCS: a broad-host-range cloning vector. Biotechniques. 1994 May;16(5):800–802. [PubMed] [Google Scholar]
  34. Kusters R., Dowhan W., de Kruijff B. Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem. 1991 May 15;266(14):8659–8662. [PubMed] [Google Scholar]
  35. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  36. Li Q. X., Dowhan W. Structural characterization of Escherichia coli phosphatidylserine decarboxylase. J Biol Chem. 1988 Aug 15;263(23):11516–11522. [PubMed] [Google Scholar]
  37. Lill R., Dowhan W., Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell. 1990 Jan 26;60(2):271–280. doi: 10.1016/0092-8674(90)90742-w. [DOI] [PubMed] [Google Scholar]
  38. Mackenzie C., Chidambaram M., Sodergren E. J., Kaplan S., Weinstock G. M. DNA repair mutants of Rhodobacter sphaeroides. J Bacteriol. 1995 Jun;177(11):3027–3035. doi: 10.1128/jb.177.11.3027-3035.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mileykovskaya E. I., Dowhan W. Alterations in the electron transfer chain in mutant strains of Escherichia coli lacking phosphatidylethanolamine. J Biol Chem. 1993 Nov 25;268(33):24824–24831. [PubMed] [Google Scholar]
  40. Moore M. D., Kaplan S. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol. 1992 Mar;174(5):1505–1514. doi: 10.1128/jb.174.5.1505-1514.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nishijima M., Bulawa C. E., Raetz C. R. Two interacting mutations causing temperature-sensitive phosphatidylglycerol synthesis in Escherichia coli membranes. J Bacteriol. 1981 Jan;145(1):113–121. doi: 10.1128/jb.145.1.113-121.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ohta A., Waggoner K., Radominska-Pyrek A., Dowhan W. Cloning of genes involved in membrane lipid synthesis: effects of amplification of phosphatidylglycerophosphate synthase in Escherichia coli. J Bacteriol. 1981 Aug;147(2):552–562. doi: 10.1128/jb.147.2.552-562.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Okada M., Matsuzaki H., Shibuya I., Matsumoto K. Cloning, sequencing, and expression in Escherichia coli of the Bacillus subtilis gene for phosphatidylserine synthase. J Bacteriol. 1994 Dec;176(24):7456–7461. doi: 10.1128/jb.176.24.7456-7461.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Poorthuis B. J., Yazaki P. J., Hostetler K. Y. An improved two dimensional thin-layer chromatography system for the separation of phosphatidylglycerol and its derivatives. J Lipid Res. 1976 Jul;17(4):433–437. [PubMed] [Google Scholar]
  45. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  46. Radcliffe C. W., Broglie R. M., Niederman R. A. Sites of phospholipid biosynthesis during induction of intracytoplasmic membrane formation in Rhodopseudomonas sphaeroides. Arch Microbiol. 1985 Jul;142(2):136–140. doi: 10.1007/BF00447056. [DOI] [PubMed] [Google Scholar]
  47. Radcliffe C. W., Steiner F. X., Carman G. M., Niederman R. A. Characterization and localization of phosphatidylglycerophosphate and phosphatidylserine synthases in Rhodobacter sphaeroides. Arch Microbiol. 1989;152(2):132–137. doi: 10.1007/BF00456090. [DOI] [PubMed] [Google Scholar]
  48. Raetz C. R., Carman G. M., Dowhan W., Jiang R. T., Waszkuc W., Loffredo W., Tsai M. D. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast. Biochemistry. 1987 Jun 30;26(13):4022–4027. doi: 10.1021/bi00387a042. [DOI] [PubMed] [Google Scholar]
  49. Raetz C. R., Dowhan W. Biosynthesis and function of phospholipids in Escherichia coli. J Biol Chem. 1990 Jan 25;265(3):1235–1238. [PubMed] [Google Scholar]
  50. Rietveld A. G., Killian J. A., Dowhan W., de Kruijff B. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J Biol Chem. 1993 Jun 15;268(17):12427–12433. [PubMed] [Google Scholar]
  51. Rivers S. L., McNairn E., Blasco F., Giordano G., Boxer D. H. Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis. Mol Microbiol. 1993 Jun;8(6):1071–1081. doi: 10.1111/j.1365-2958.1993.tb01652.x. [DOI] [PubMed] [Google Scholar]
  52. Satishchandran C., Taylor J. C., Markham G. D. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Mol Microbiol. 1993 Aug;9(4):835–846. doi: 10.1111/j.1365-2958.1993.tb01742.x. [DOI] [PubMed] [Google Scholar]
  53. Usui M., Sembongi H., Matsuzaki H., Matsumoto K., Shibuya I. Primary structures of the wild-type and mutant alleles encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Bacteriol. 1994 Jun;176(11):3389–3392. doi: 10.1128/jb.176.11.3389-3392.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Xia W., Dowhan W. In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):783–787. doi: 10.1073/pnas.92.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. van der Goot F. G., Didat N., Pattus F., Dowhan W., Letellier L. Role of acidic lipids in the translocation and channel activity of colicins A and N in Escherichia coli cells. Eur J Biochem. 1993 Apr 1;213(1):217–221. doi: 10.1111/j.1432-1033.1993.tb17751.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES