Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(4):1120–1125. doi: 10.1128/jb.178.4.1120-1125.1996

Further genetic analysis of the activation function of the TyrR regulatory protein of Escherichia coli.

J Yang 1, H Camakaris 1, A J Pittard 1
PMCID: PMC177774  PMID: 8576047

Abstract

Previous reports (J. Cui and R. L. Somerville, J. Bacteriol. 175:1777-1784, 1993; J. Yang, H. Camakaris, and A. J. Pittard, J. Bacteriol. 175:6372-6375, 1993) have identified a number of amino acids in the N-terminal domain of the TyrR protein which are critical for activation of gene expression but which play no role in TyrR-mediated repression. These amino acids were clustered in a single region involving positions 2, 3, 5, 7, 9, 10, and 16. Using random and site-directed mutagenesis, we have identified an additional eight key amino acids whose substitution results in significant or total loss of activator function. All of these are located in the N-terminal domain of TyrR. Alanine scanning at these eight new positions and at five of the previously identified positions for which alanine substitutions had not been obtained has identified three amino acids whose side chains are critical for activation, namely, D-9, R-10, and D-103. Glycine at position 37 is also of critical importance. Alanine substitutions at four other positions (C-7, E-16, D-19, and V-93) caused partial but significant loss of activation, indicating that the side chains of these amino acids also play a contributing role in the activation process.

Full Text

The Full Text of this article is available as a PDF (200.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews A. E., Dickson B., Lawley B., Cobbett C., Pittard A. J. Importance of the position of TYR R boxes for repression and activation of the tyrP and aroF genes in Escherichia coli. J Bacteriol. 1991 Aug;173(16):5079–5085. doi: 10.1128/jb.173.16.5079-5085.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  3. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cui J., Somerville R. L. A mutational analysis of the structural basis for transcriptional activation and monomer-monomer interaction in the TyrR system of Escherichia coli K-12. J Bacteriol. 1993 Mar;175(6):1777–1784. doi: 10.1128/jb.175.6.1777-1784.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cui J., Somerville R. L. Mutational uncoupling of the transcriptional activation function of the TyrR protein of Escherichia coli K-12 from the repression function. J Bacteriol. 1993 Jan;175(1):303–306. doi: 10.1128/jb.175.1.303-306.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cui J., Somerville R. L. The TyrR protein of Escherichia coli, analysis by limited proteolysis of domain structure and ligand-mediated conformational changes. J Biol Chem. 1993 Mar 5;268(7):5040–5047. [PubMed] [Google Scholar]
  7. Heatwole V. M., Somerville R. L. The tryptophan-specific permease gene, mtr, is differentially regulated by the tryptophan and tyrosine repressors in Escherichia coli K-12. J Bacteriol. 1991 Jun;173(11):3601–3604. doi: 10.1128/jb.173.11.3601-3604.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kasian P. A., Pittard J. Construction of a tyrP-lac operon fusion strain and its use in the isolation and analysis of mutants derepressed for tyrP expression. J Bacteriol. 1984 Oct;160(1):175–183. doi: 10.1128/jb.160.1.175-183.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kieny M. P., Lathe R., Lecocq J. P. New versatile cloning and sequencing vectors based on bacteriophage M13. Gene. 1983 Dec;26(1):91–99. doi: 10.1016/0378-1119(83)90039-2. [DOI] [PubMed] [Google Scholar]
  10. Kolkhof P., Müller-Hill B. Lambda cI repressor mutants altered in transcriptional activation. J Mol Biol. 1994 Sep 9;242(1):23–36. doi: 10.1006/jmbi.1994.1554. [DOI] [PubMed] [Google Scholar]
  11. Kwok T., Yang J., Pittard A. J., Wilson T. J., Davidson B. E. Analysis of an Escherichia coli mutant TyrR protein with impaired capacity for tyrosine-mediated repression, but still able to activate at sigma 70 promoters. Mol Microbiol. 1995 Aug;17(3):471–481. doi: 10.1111/j.1365-2958.1995.mmi_17030471.x. [DOI] [PubMed] [Google Scholar]
  12. Lawley B., Fujita N., Ishihama A., Pittard A. J. The TyrR protein of Escherichia coli is a class I transcription activator. J Bacteriol. 1995 Jan;177(1):238–241. doi: 10.1128/jb.177.1.238-241.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  14. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pittard A. J., Davidson B. E. TyrR protein of Escherichia coli and its role as repressor and activator. Mol Microbiol. 1991 Jul;5(7):1585–1592. doi: 10.1111/j.1365-2958.1991.tb01904.x. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sarsero J. P., Pittard A. J. Molecular analysis of the TyrR protein-mediated activation of mtr gene expression in Escherichia coli K-12. J Bacteriol. 1991 Dec;173(23):7701–7704. doi: 10.1128/jb.173.23.7701-7704.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sarsero J. P., Wookey P. J., Pittard A. J. Regulation of expression of the Escherichia coli K-12 mtr gene by TyrR protein and Trp repressor. J Bacteriol. 1991 Jul;173(13):4133–4143. doi: 10.1128/jb.173.13.4133-4143.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Whipp M. J., Pittard A. J. Regulation of aromatic amino acid transport systems in Escherichia coli K-12. J Bacteriol. 1977 Nov;132(2):453–461. doi: 10.1128/jb.132.2.453-461.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wilson T. J., Argaet V. P., Howlett G. J., Davidson B. E. Evidence for two aromatic amino acid-binding sites, one ATP-dependent and the other ATP-independent, in the Escherichia coli regulatory protein TyrR. Mol Microbiol. 1995 Aug;17(3):483–492. doi: 10.1111/j.1365-2958.1995.mmi_17030483.x. [DOI] [PubMed] [Google Scholar]
  21. Yang J., Camakaris H., Pittard A. J. Mutations in the tyrR gene of Escherichia coli which affect TyrR-mediated activation but not TyrR-mediated repression. J Bacteriol. 1993 Oct;175(19):6372–6375. doi: 10.1128/jb.175.19.6372-6375.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yang J., Ganesan S., Sarsero J., Pittard A. J. A genetic analysis of various functions of the TyrR protein of Escherichia coli. J Bacteriol. 1993 Mar;175(6):1767–1776. doi: 10.1128/jb.175.6.1767-1776.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yang J., Pittard J. Molecular analysis of the regulatory region of the Escherichia coli K-12 tyrB gene. J Bacteriol. 1987 Oct;169(10):4710–4715. doi: 10.1128/jb.169.10.4710-4715.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES