Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Feb;178(4):1197–1199. doi: 10.1128/jb.178.4.1197-1199.1996

Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria.

V Pelicic 1, J M Reyrat 1, B Gicquel 1
PMCID: PMC177784  PMID: 8576057

Abstract

Expression in mycobacteria of the structural gene sacB, which encodes the Bacillus subtilis levansucrase, was investigated. sacB expression is lethal to Mycobacterium smegmatis and Mycobacterium bovis BCG in the presence of 10% sucrose. sacB could thus be used as a counterselectable marker in mycobacteria.

Full Text

The Full Text of this article is available as a PDF (164.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baulard A., Jourdan C., Mercenier A., Locht C. Rapid mycobacterial plasmid analysis by electroduction between Mycobacterium spp. and Escherichia coli. Nucleic Acids Res. 1992 Aug 11;20(15):4105–4105. doi: 10.1093/nar/20.15.4105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blomfield I. C., Vaughn V., Rest R. F., Eisenstein B. I. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol. 1991 Jun;5(6):1447–1457. doi: 10.1111/j.1365-2958.1991.tb00791.x. [DOI] [PubMed] [Google Scholar]
  3. Gay P., Le Coq D., Steinmetz M., Berkelman T., Kado C. I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol. 1985 Nov;164(2):918–921. doi: 10.1128/jb.164.2.918-921.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guilhot C., Gicquel B., Martín C. Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):181–186. doi: 10.1016/0378-1097(92)90152-e. [DOI] [PubMed] [Google Scholar]
  5. Jacobs W. R., Jr Advances in mycobacterial genetics: new promises for old diseases. Immunobiology. 1992 Feb;184(2-3):147–156. doi: 10.1016/S0171-2985(11)80472-9. [DOI] [PubMed] [Google Scholar]
  6. Jäger W., Schäfer A., Pühler A., Labes G., Wohlleben W. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J Bacteriol. 1992 Aug;174(16):5462–5465. doi: 10.1128/jb.174.16.5462-5465.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kalpana G. V., Bloom B. R., Jacobs W. R., Jr Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5433–5437. doi: 10.1073/pnas.88.12.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lepesant J. A., Kunst F., Lepesant-Kejzlarová J., Dedonder R. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol Gen Genet. 1972;118(2):135–160. doi: 10.1007/BF00267084. [DOI] [PubMed] [Google Scholar]
  9. Quandt J., Hynes M. F. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993 May 15;127(1):15–21. doi: 10.1016/0378-1119(93)90611-6. [DOI] [PubMed] [Google Scholar]
  10. Ranes M. G., Rauzier J., Lagranderie M., Gheorghiu M., Gicquel B. Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a "mini" mycobacterium-Escherichia coli shuttle vector. J Bacteriol. 1990 May;172(5):2793–2797. doi: 10.1128/jb.172.5.2793-2797.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reyrat J. M., Berthet F. X., Gicquel B. The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guérin. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8768–8772. doi: 10.1073/pnas.92.19.8768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ried J. L., Collmer A. An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene. 1987;57(2-3):239–246. doi: 10.1016/0378-1119(87)90127-2. [DOI] [PubMed] [Google Scholar]
  13. Sander P., Meier A., Böttger E. C. rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol. 1995 Jun;16(5):991–1000. doi: 10.1111/j.1365-2958.1995.tb02324.x. [DOI] [PubMed] [Google Scholar]
  14. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  15. Soupène E., Foussard M., Boistard P., Truchet G., Batut J. Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3759–3763. doi: 10.1073/pnas.92.9.3759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steinmetz M., Le Coq D., Djemia H. B., Gay P. Analyse génétique de sacB, gène de structure d'une enzyme secrétée, la lévane-saccharase de Bacillus subtilis Marburg. Mol Gen Genet. 1983;191(1):138–144. doi: 10.1007/BF00330901. [DOI] [PubMed] [Google Scholar]
  17. Stibitz S. Use of conditionally counterselectable suicide vectors for allelic exchange. Methods Enzymol. 1994;235:458–465. doi: 10.1016/0076-6879(94)35161-9. [DOI] [PubMed] [Google Scholar]
  18. Structure and functions of the cell envelope in relation to mycobacterial virulence, pathogenicity and multiple drug resistance. 7th Forum in Microbiology. Res Microbiol. 1991 May;142(4):419–481. doi: 10.1016/0923-2508(91)90112-n. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES