Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Mar;178(5):1248–1257. doi: 10.1128/jb.178.5.1248-1257.1996

Identification and characterization of the caiF gene encoding a potential transcriptional activator of carnitine metabolism in Escherichia coli.

K Eichler 1, A Buchet 1, R Lemke 1, H P Kleber 1, M A Mandrand-Berthelot 1
PMCID: PMC177796  PMID: 8631699

Abstract

Expression of the Escherichia coli caiTABCDE and fixABCX operons involved in carnitine metabolism is induced by both carnitine and anaerobiosis. When cloned into a multicopy plasmid, the 3' region adjacent to the caiTABCDE operon was found to increase levels of carnitine dehydratase activity synthesized from the chromosomal caiB gene. The nucleotide sequence was determined, and it was shown to contain an open reading frame of 393 bp named caiF which is transcribed in the direction opposite that of the cai operon. This open reading frame encodes a protein of 131 amino acids with a predicted molecular mass of 15,438 Da which does not have any significant homology with proteins available in data libraries. In vivo overexpression consistently led to the synthesis of a 16-kDa protein. The caiF gene was transcribed as a monocistronic mRNA under anaerobiosis independently of the presence of carnitine. Primer extension analysis located the start site of transcription to position 82 upstream of the caiF initiation codon. It was preceded by a cyclic AMP receptor protein motif centered at position -41.5. Overproduction of CaiF resulted in the stimulation of transcription of the divergent cai and fix operons in the presence of carnitine. This suggested that CaiF by interacting with carnitine plays the role of an activator, thereby mediating induction of carnitine metabolism. Moreover, CaiF could complement in trans the regulatory defect of laboratory strain MC4100 impaired in the carnitine pathway. Expression of a caiF-lacZ operon fusion was subject to FNR regulator-mediated anaerobic induction and cyclic AMP receptor protein activation. The histone-like protein H-NS and the NarL (plus nitrate) regulator acted as repressors. Because of the multiple controls to which the caiF gene is subjected, it appears to be a key element in the regulation of carnitine metabolism.

Full Text

The Full Text of this article is available as a PDF (428.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  2. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  3. Casadaban M. J. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol. 1976 Jul 5;104(3):541–555. doi: 10.1016/0022-2836(76)90119-4. [DOI] [PubMed] [Google Scholar]
  4. Csonka L. N., Clark A. J. Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol. 1980 Jul;143(1):529–530. doi: 10.1128/jb.143.1.529-530.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eichler K., Bourgis F., Buchet A., Kleber H. P., Mandrand-Berthelot M. A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol. 1994 Sep;13(5):775–786. doi: 10.1111/j.1365-2958.1994.tb00470.x. [DOI] [PubMed] [Google Scholar]
  6. Eichler K., Buchet A., Bourgis F., Kleber H. P., Mandrand-Berthelot M. A. The fix Escherichia coli region contains four genes related to carnitine metabolism. J Basic Microbiol. 1995;35(4):217–227. doi: 10.1002/jobm.3620350404. [DOI] [PubMed] [Google Scholar]
  7. Eichler K., Schunck W. H., Kleber H. P., Mandrand-Berthelot M. A. Cloning, nucleotide sequence, and expression of the Escherichia coli gene encoding carnitine dehydratase. J Bacteriol. 1994 May;176(10):2970–2975. doi: 10.1128/jb.176.10.2970-2975.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gough J. A., Murray N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. doi: 10.1016/s0022-2836(83)80047-3. [DOI] [PubMed] [Google Scholar]
  9. Guest J. R. Oxygen-regulated gene expression in Escherichia coli. The 1992 Marjory Stephenson Prize Lecture. J Gen Microbiol. 1992 Nov;138(11):2253–2263. doi: 10.1099/00221287-138-11-2253. [DOI] [PubMed] [Google Scholar]
  10. Iuchi S., Lin E. C. Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol. 1993 Jul;9(1):9–15. doi: 10.1111/j.1365-2958.1993.tb01664.x. [DOI] [PubMed] [Google Scholar]
  11. Jung H., Jung K., Kleber H. P. L-carnitine uptake by Escherichia coli. J Basic Microbiol. 1990;30(7):507–514. doi: 10.1002/jobm.3620300711. [DOI] [PubMed] [Google Scholar]
  12. Jung H., Jung K., Kleber H. P. Purification and properties of carnitine dehydratase from Escherichia coli--a new enzyme of carnitine metabolization. Biochim Biophys Acta. 1989 Jun 28;1003(3):270–276. doi: 10.1016/0005-2760(89)90232-4. [DOI] [PubMed] [Google Scholar]
  13. Jung H., Jung K., Kleber H. P. Synthesis of L-carnitine by microorganisms and isolated enzymes. Adv Biochem Eng Biotechnol. 1993;50:21–44. doi: 10.1007/BFb0007385. [DOI] [PubMed] [Google Scholar]
  14. Jung K., Jung H., Kleber H. P. Regulation of L-carnitine metabolism in Escherichia coli. J Basic Microbiol. 1987;27(3):131–137. doi: 10.1002/jobm.3620270303. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lyons L. B., Zinder N. D. The genetic map of the filamentous bacteriophage f1. Virology. 1972 Jul;49(1):45–60. doi: 10.1016/s0042-6822(72)80006-0. [DOI] [PubMed] [Google Scholar]
  17. Merrick M. J. In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol. 1993 Dec;10(5):903–909. doi: 10.1111/j.1365-2958.1993.tb00961.x. [DOI] [PubMed] [Google Scholar]
  18. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pérez-Martín J., Rojo F., de Lorenzo V. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev. 1994 Jun;58(2):268–290. doi: 10.1128/mr.58.2.268-290.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roth S., Jung K., Jung H., Hommel R. K., Kleber H. P. Crotonobetaine reductase from Escherichia coli--a new inducible enzyme of anaerobic metabolization of L(-)-carnitine. Antonie Van Leeuwenhoek. 1994;65(1):63–69. doi: 10.1007/BF00878280. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seim H., Löster H., Claus R., Kleber H. P., Strack E. Stimulation of the anaerobic growth of Salmonella typhimurium by reduction of L-carnitine, carnitine derivatives and structure-related trimethylammonium compounds. Arch Microbiol. 1982 Jul;132(1):91–95. doi: 10.1007/BF00690825. [DOI] [PubMed] [Google Scholar]
  23. Stewart V., MacGregor C. H. Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol. 1982 Aug;151(2):788–799. doi: 10.1128/jb.151.2.788-799.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stewart V. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol Microbiol. 1993 Aug;9(3):425–434. doi: 10.1111/j.1365-2958.1993.tb01704.x. [DOI] [PubMed] [Google Scholar]
  25. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tyson K. L., Bell A. I., Cole J. A., Busby S. J. Definition of nitrite and nitrate response elements at the anaerobically inducible Escherichia coli nirB promoter: interactions between FNR and NarL. Mol Microbiol. 1993 Jan;7(1):151–157. doi: 10.1111/j.1365-2958.1993.tb01106.x. [DOI] [PubMed] [Google Scholar]
  27. Ueno-Nishio S., Backman K. C., Magasanik B. Regulation at the glnL-operator-promoter of the complex glnALG operon of Escherichia coli. J Bacteriol. 1983 Mar;153(3):1247–1251. doi: 10.1128/jb.153.3.1247-1251.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Valentin-Hansen P., Albrechtsen B., Løve Larsen J. E. DNA-protein recognition: demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J. 1986 Aug;5(8):2015–2021. doi: 10.1002/j.1460-2075.1986.tb04458.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wu L. F., Mandrand-Berthelot M. A. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity. Biochimie. 1986 Jan;68(1):167–179. doi: 10.1016/s0300-9084(86)81081-1. [DOI] [PubMed] [Google Scholar]
  30. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  31. de Crombrugghe B., Busby S., Buc H. Cyclic AMP receptor protein: role in transcription activation. Science. 1984 May 25;224(4651):831–838. doi: 10.1126/science.6372090. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES