Abstract
An activity similar to that of dipeptidyl aminopeptidase I (DAP I) which releases dipeptide from Gly-Arg-p-nitroanilide (Gly-Arg-pNA) was detected in a Pseudomonas sp. An enzyme was isolated and purified about 400-fold by a series of column chromatographies. The enzyme, named DAP BI (DAP from bacteria, type I), was revealed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and isoelectric focusing. The molecular mass was estimated to be 82 kDa by SDS-PAGE and 65 kDa by gel filtration, suggesting that the enzyme may be a monomer. The enzyme had an isoelectric point of 4.7. It is optimally active at pH 9.0. The Km and Vmax of the enzyme for Gly-Arg-pNA were 0.25 mM and 195 micromol/min/mg, respectively. The purified enzyme did not hydrolyze Gly-Phe-pNA, which was also a substrate for DAP I, whereas it hydrolyzed Arg-Arg-4-methoxy-beta-naphthylamide (Arg-Arg-MNA), a model substrate for DAP III. The Km and Vmax for Arg-Arg-MNA were 0.019 mM and 145 micromol/min/mg, respectively. This purified enzyme can also catalyze the removal of Asp-Arg from the N termini of angiotensins I and II. The enzyme activity was completely inhibited by Zn(II) (0.5 mM), tosyl-L-Lys-chloromethyl ketone (0.1 mM), and leupeptin (0.1 mM) and partially inhibited by Co(II) (0.5 mM) and chymostatin (0.1 mM), whereas the enzyme was not affected by general serine protease inhibitors (phenylmethylsulfonyl fluoride and diisopropylfluorophosphate) and thiol protease inhibitors. The substrate specificity, classification of catalytic site, and other enzymatic properties demonstrate that this enzyme is distinct from the previously described mammalian DAPs I and III and Saccharomyces cerevisiae DAP III. These results indicate that DAP BI may be a new type of the DAP family.
Full Text
The Full Text of this article is available as a PDF (239.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atlan D., Laloi P., Portalier R. Isolation and Characterization of Aminopeptidase-Deficient Lactobacillus bulgaricus Mutants. Appl Environ Microbiol. 1989 Jul;55(7):1717–1723. doi: 10.1128/aem.55.7.1717-1723.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atlan D., Laloi P., Portalier R. X-Prolyl-Dipeptidyl Aminopeptidase of Lactobacillus delbrueckii subsp. bulgaricus: Characterization of the Enzyme and Isolation of Deficient Mutants. Appl Environ Microbiol. 1990 Jul;56(7):2174–2179. doi: 10.1128/aem.56.7.2174-2179.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bordallo C., Schwencke J., Suarez Rendueles M. Localization of the thermosensitive X-prolyl dipeptidyl aminopeptidase in the vacuolar membrane of Saccharomyces cerevisiae. FEBS Lett. 1984 Jul 23;173(1):199–203. doi: 10.1016/0014-5793(84)81046-7. [DOI] [PubMed] [Google Scholar]
- Chan S. A., Toursarkissian K., Sweeney J. P., Jones T. H. Dipeptidyl-aminopeptidases and aminopeptidases in Dictyostelium discoideum. Biochem Biophys Res Commun. 1985 Mar 29;127(3):962–968. doi: 10.1016/s0006-291x(85)80038-3. [DOI] [PubMed] [Google Scholar]
- Ganapathy V., Leibach F. H. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Studies with L-carnosine and glycyl-L-proline. J Biol Chem. 1983 Dec 10;258(23):14189–14192. [PubMed] [Google Scholar]
- Kato T., Nagatsu T., Kimura T., Sakakibara S. Fluorescence assay of x-prolyl dipeptidyl-aminopeptidase activity with a new fluorogenic substrate. Biochem Med. 1978 Jun;19(3):351–359. doi: 10.1016/0006-2944(78)90035-2. [DOI] [PubMed] [Google Scholar]
- Krutzsch H. C., Pisano Analysis of dipeptides by gas chromatography-mass spectrometry and application to sequencing with dipeptidyl aminopeptidases. Methods Enzymol. 1977;47:391–404. doi: 10.1016/0076-6879(77)47041-1. [DOI] [PubMed] [Google Scholar]
- Kuribayashi M., Yamada H., Ohmori T., Yanai M., Imoto T. Endopeptidase activity of cathepsin C, dipeptidyl aminopeptidase I, from bovine spleen. J Biochem. 1993 Apr;113(4):441–449. doi: 10.1093/oxfordjournals.jbchem.a124064. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee C. M., Snyder S. H. Dipeptidyl-aminopeptidase III of rat brain. Selective affinity for enkephalin and angiotensin. J Biol Chem. 1982 Oct 25;257(20):12043–12050. [PubMed] [Google Scholar]
- McDonald J. K., Zeitman B. B., Reilly T. J., Ellis S. New observations on the substrate specificity of cathepsin C (dipeptidyl aminopeptidase I). Including the degradation of beta-corticotropin and other peptide hormones. J Biol Chem. 1969 May 25;244(10):2693–2709. [PubMed] [Google Scholar]
- McGuire M. J., Lipsky P. E., Thiele D. L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem. 1993 Feb 5;268(4):2458–2467. [PubMed] [Google Scholar]
- McGuire M. J., Lipsky P. E., Thiele D. L. Purification and characterization of dipeptidyl peptidase I from human spleen. Arch Biochem Biophys. 1992 Jun;295(2):280–288. doi: 10.1016/0003-9861(92)90519-3. [DOI] [PubMed] [Google Scholar]
- McKain N., Wallace R. J., Watt N. D. Selective isolation of bacteria with dipeptidyl aminopeptidase type I activity from the sheep rumen. FEMS Microbiol Lett. 1992 Aug 15;74(2-3):169–173. doi: 10.1016/0378-1097(92)90424-m. [DOI] [PubMed] [Google Scholar]
- Metroione R. M., Neves A. G., Fruton J. S. Purification and properties of dipeptidyl transferase (Cathepsin C). Biochemistry. 1966 May;5(5):1597–1604. doi: 10.1021/bi00869a021. [DOI] [PubMed] [Google Scholar]
- Mineyama R., Saito K. Purification and characterization of dipeptidyl peptidase IV from Streptococcus salivarius HHT. Microbios. 1991;67(274):37–52. [PubMed] [Google Scholar]
- Murao S., Kitade T., Oyama H., Shin T. Isolation and characterization of a dipeptidyl aminopeptidase from Streptomyces sp. WM-23. Biosci Biotechnol Biochem. 1994 Aug;58(8):1545–1546. doi: 10.1271/bbb.58.1545. [DOI] [PubMed] [Google Scholar]
- Nardi M., Chopin M. C., Chopin A., Cals M. M., Gripon J. C. Cloning and DNA sequence analysis of an X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. lactis NCDO 763. Appl Environ Microbiol. 1991 Jan;57(1):45–50. doi: 10.1128/aem.57.1.45-50.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi T., Dehdarani A. H., Yonezawa S., Tang J. Porcine spleen cathepsin B is an exopeptidase. J Biol Chem. 1986 Jul 15;261(20):9375–9381. [PubMed] [Google Scholar]
- Watanabe Y., Kumagai Y., Fujimoto Y. Presence of a dipeptidyl aminopeptidase III in Saccharomyces cerevisiae. Chem Pharm Bull (Tokyo) 1990 Jan;38(1):246–248. doi: 10.1248/cpb.38.246. [DOI] [PubMed] [Google Scholar]
- Yoshimoto T., Tsuru D. Proline-specific dipeptidyl aminopeptidase from Flavobacterium meningosepticum. J Biochem. 1982 Jun;91(6):1899–1906. doi: 10.1093/oxfordjournals.jbchem.a133884. [DOI] [PubMed] [Google Scholar]
- Yoshimoto T., Walter R., Tsuru D. Proline-specific endopeptidase from Flavobacterium. Purification and properties. J Biol Chem. 1980 May 25;255(10):4786–4792. [PubMed] [Google Scholar]