Abstract
Activity staining of extracts of Methanosarcina barkeri electrophoresed in polyacrylamide gels revealed an additional methylcobalamin:coenzyme M (methylcobalamin:CoM) methyltransferase present in cells grown on acetate but not in those grown on trimethylamine. This methyltransferase is the 480-kDa corrinoid protein previously identified by its methylation following inhibition of methyl-CoM reductase in otherwise methanogenic cell extracts. The methylcobalamin:CoM methyltransferase activity of the purified 480-kDa protein increased from 0.4 to 3.8 micromol/min/mg after incubation with sodium dodecyl sulfate (SDS). Following SDS-polyacrylamide gel electrophoresis analysis of unheated protein samples, a polypeptide with an apparent molecular mass of 48 kDa which possessed methylcobalamin:CoM methyltransferase activity was detected. This polypeptide migrated with an apparent mass of 41 kDa when the 480-kDa protein was heated before electrophoresis, indicating that the alpha subunit is responsible for the activity. The N-terminal sequence of this subunit was 47% similar to the N termini of the A and M isozymes of methylcobalamin:CoM methyltransferase (methyltransferase II). The endogenous methylated corrinoid bound to the beta subunit of the 480-kDa protein could be demethylated by CoM, but not by homocysteine or dithiothreitol, resulting in a Co(I) corrinoid. The Co(I) corrinoid could be remethylated by methyl iodide, and the protein catalyzed a methyl iodide:CoM transmethylation reaction at a rate of 2.3 micromol/min/mg. Methyl-CoM was stoichiometrically produced from CoM, as demonstrated by high-pressure liquid chromatography with indirect photometric detection. Two thiols, 2-mercaptoethanol and mercapto-2-propanol, were poorer substrates than CoM, while several others tested (including 3-mercaptopropanesulfonate) did not serve as methyl acceptors. These data indicate that the 480-kDa corrinoid protein is composed of a novel isozyme of methyltransferase II which remains firmly bound to a corrinoid cofactor binding subunit during isolation.
Full Text
The Full Text of this article is available as a PDF (331.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee R. V., Frasca V., Ballou D. P., Matthews R. G. Participation of cob(I) alamin in the reaction catalyzed by methionine synthase from Escherichia coli: a steady-state and rapid reaction kinetic analysis. Biochemistry. 1990 Dec 18;29(50):11101–11109. doi: 10.1021/bi00502a013. [DOI] [PubMed] [Google Scholar]
- Banerjee R. V., Harder S. R., Ragsdale S. W., Matthews R. G. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry. 1990 Feb 6;29(5):1129–1135. doi: 10.1021/bi00457a005. [DOI] [PubMed] [Google Scholar]
- Becher B., Müller V., Gottschalk G. N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein. J Bacteriol. 1992 Dec;174(23):7656–7660. doi: 10.1128/jb.174.23.7656-7660.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Burke S. A., Krzycki J. A. Involvement of the "A" isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine. J Bacteriol. 1995 Aug;177(15):4410–4416. doi: 10.1128/jb.177.15.4410-4416.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao X. J., Krzycki J. A. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri. J Bacteriol. 1991 Sep;173(17):5439–5448. doi: 10.1128/jb.173.17.5439-5448.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drennan C. L., Huang S., Drummond J. T., Matthews R. G., Lidwig M. L. How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science. 1994 Dec 9;266(5191):1669–1674. doi: 10.1126/science.7992050. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958 Apr;74(2):443–450. doi: 10.1016/0003-9861(58)90014-6. [DOI] [PubMed] [Google Scholar]
- Ellermann J., Hedderich R., Böcher R., Thauer R. K. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem. 1988 Mar 15;172(3):669–677. doi: 10.1111/j.1432-1033.1988.tb13941.x. [DOI] [PubMed] [Google Scholar]
- Ferry J. G. Biochemistry of methanogenesis. Crit Rev Biochem Mol Biol. 1992;27(6):473–503. doi: 10.3109/10409239209082570. [DOI] [PubMed] [Google Scholar]
- Grahame D. A. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J Biol Chem. 1991 Nov 25;266(33):22227–22233. [PubMed] [Google Scholar]
- Grahame D. A. Different isozymes of methylcobalamin:2-mercaptoethanesulfonate methyltransferase predominate in methanol- versus acetate-grown Methanosarcina barkeri. J Biol Chem. 1989 Aug 5;264(22):12890–12894. [PubMed] [Google Scholar]
- Grahame D. A. Substrate and cofactor reactivity of a carbon monoxide dehydrogenase-corrinoid enzyme complex: stepwise reduction of iron-sulfur and corrinoid centers, the corrinoid Co2+/1+ redox midpoint potential, and overall synthesis of acetyl-CoA. Biochemistry. 1993 Oct 12;32(40):10786–10793. doi: 10.1021/bi00091a033. [DOI] [PubMed] [Google Scholar]
- Gärtner P., Ecker A., Fischer R., Linder D., Fuchs G., Thauer R. K. Purification and properties of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Eur J Biochem. 1993 Apr 1;213(1):537–545. doi: 10.1111/j.1432-1033.1993.tb17792.x. [DOI] [PubMed] [Google Scholar]
- Gärtner P., Weiss D. S., Harms U., Thauer R. K. N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanobacterium thermoautotrophicum. Catalytic mechanism and sodium ion dependence. Eur J Biochem. 1994 Dec 1;226(2):465–472. doi: 10.1111/j.1432-1033.1994.tb20071.x. [DOI] [PubMed] [Google Scholar]
- Harder S. R., Lu W. P., Feinberg B. A., Ragsdale S. W. Spectroelectrochemical studies of the corrinoid/iron-sulfur protein involved in acetyl coenzyme A synthesis by Clostridium thermoaceticum. Biochemistry. 1989 Nov 14;28(23):9080–9087. doi: 10.1021/bi00449a019. [DOI] [PubMed] [Google Scholar]
- Harms U., Weiss D. S., Gärtner P., Linder D., Thauer R. K. The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur J Biochem. 1995 Mar 15;228(3):640–648. doi: 10.1111/j.1432-1033.1995.0640m.x. [DOI] [PubMed] [Google Scholar]
- Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jablonski P. E., Lu W. P., Ragsdale S. W., Ferry J. G. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J Biol Chem. 1993 Jan 5;268(1):325–329. [PubMed] [Google Scholar]
- Kengen S. W., Daas P. J., Duits E. F., Keltjens J. T., van der Drift C., Vogels G. D. Isolation of a 5-hydroxybenzimidazolyl cobamide-containing enzyme involved in the methyltetrahydromethanopterin: coenzyme M methyltransferase reaction in Methanobacterium thermoautotrophicum. Biochim Biophys Acta. 1992 Feb 1;1118(3):249–260. doi: 10.1016/0167-4838(92)90282-i. [DOI] [PubMed] [Google Scholar]
- Kremer J. D., Cao X., Krzycki J. Isolation of two novel corrinoid proteins from acetate-grown Methanosarcina barkeri. J Bacteriol. 1993 Aug;175(15):4824–4833. doi: 10.1128/jb.175.15.4824-4833.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kremer J., Burchfield S., Frazier C., Krzycki J. Differential in vitro methylation and synthesis of the 480-kilodalton corrinoid protein in Methanosarcina barkeri grown on different substrates. J Bacteriol. 1994 Jan;176(1):253–255. doi: 10.1128/jb.176.1.253-255.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lu W. P., Becher B., Gottschalk G., Ragsdale S. W. Electron paramagnetic resonance spectroscopic and electrochemical characterization of the partially purified N5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanosarcina mazei Gö1. J Bacteriol. 1995 May;177(9):2245–2250. doi: 10.1128/jb.177.9.2245-2250.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu W. P., Harder S. R., Ragsdale S. W. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J Biol Chem. 1990 Feb 25;265(6):3124–3133. [PubMed] [Google Scholar]
- Müller V., Blaut M., Gottschalk G. The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur J Biochem. 1988 Mar 15;172(3):601–606. doi: 10.1111/j.1432-1033.1988.tb13931.x. [DOI] [PubMed] [Google Scholar]
- Raybuck S. A., Ramer S. E., Abbanat D. R., Peters J. W., Orme-Johnson W. H., Ferry J. G., Walsh C. T. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J Bacteriol. 1991 Jan;173(2):929–932. doi: 10.1128/jb.173.2.929-932.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stupperich E., Juza A., Hoppert M., Mayer F. Cloning, sequencing and immunological characterization of the corrinoid-containing subunit of the N5-methyltetrahydromethanopterin: coenzyme-M methyltransferase from Methanobacterium thermoautotrophicum. Eur J Biochem. 1993 Oct 1;217(1):115–121. doi: 10.1111/j.1432-1033.1993.tb18225.x. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss D. S., Gärtner P., Thauer R. K. The energetics and sodium-ion dependence of N5-methyltetrahydromethanopterin:coenzyme M methyltransferase studied with cob(I)alamin as methyl acceptor and methylcob(III)alamin as methyl donor. Eur J Biochem. 1994 Dec 15;226(3):799–809. doi: 10.1111/j.1432-1033.1994.00799.x. [DOI] [PubMed] [Google Scholar]
- Yeliseev A., Gärtner P., Harms U., Linder D., Thauer R. K. Function of methylcobalamin: coenzyme M methyltransferase isoenzyme II in Methanosarcina barkeri. Arch Microbiol. 1993;159(6):530–536. doi: 10.1007/BF00249031. [DOI] [PubMed] [Google Scholar]
- van der Meijden P., Heythuysen H. J., Pouwels A., Houwen F., van der Drift C., Vogels G. D. Methyltransferases involved in methanol conversion by Methanosarcina barkeri. Arch Microbiol. 1983 Jun;134(3):238–242. doi: 10.1007/BF00407765. [DOI] [PubMed] [Google Scholar]
- van der Meijden P., te Brömmelstroet B. W., Poirot C. M., van der Drift C., Vogels G. D. Purification and properties of methanol:5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J Bacteriol. 1984 Nov;160(2):629–635. doi: 10.1128/jb.160.2.629-635.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]