Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Mar;178(5):1335–1340. doi: 10.1128/jb.178.5.1335-1340.1996

Expression, purification, and characterization of EpiC, an enzyme involved in the biosynthesis of the lantibiotic epidermin, and sequence analysis of Staphylococcus epidermidis epiC mutants.

T Kupke 1, F Gotz 1
PMCID: PMC177807  PMID: 8631710

Abstract

The plasmid-encoded epidermin biosynthetic gene epiC of Staphylococcus epidermidis Tü3298 was expressed in Escherichia coli by using the T7 RNA polymerase-promoter system, and the gene product EpiC was identified by Western blotting (immunoblotting) with an anti-EpiC-peptide antiserum. EpiC was a hydrophobic but soluble protein. EpiC was purified by hydrophobic-interaction chromatography. The determined amino-terminal amino acid sequence was M I N I N N I .... The electrophoretic migration behavior of EpiC depended on the oxidation state of the enzyme, indicating the formation of an intramolecular disulfide bridge between C-274 and C-321. The cysteine residues in the motifs WC-274YG and C-321HG of EpiC are conserved in all lantibiotic enzymes of the C type (so-called LanC proteins) and in the CylM protein. Mutated epiC genes from S. epidermidis epiC mutants were cloned and expressed in E. coli. Sequence analysis revealed that the mutations occurred in the two motifs -S-X-X-X-G-X-X-G- and -N-X-G-X-A-H-G-X-X-G-, which are conserved in all LanC proteins. For the investigation of EpiC-EpiA interactions, precursor peptide EpiA was coupled to N-hydroxysuccinimide-activated Sepharose High Performance Material (HiTrap). Under reducing conditions, EpiC was retarded on the EpiA-HiTrap column. In the incubation experiments, EpiC did not react with EpiA, with proepidermin, or with oxidative decarboxylated peptides.

Full Text

The Full Text of this article is available as a PDF (302.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augustin J., Rosenstein R., Wieland B., Schneider U., Schnell N., Engelke G., Entian K. D., Götz F. Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem. 1992 Mar 15;204(3):1149–1154. doi: 10.1111/j.1432-1033.1992.tb16740.x. [DOI] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eichler K., Bourgis F., Buchet A., Kleber H. P., Mandrand-Berthelot M. A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli. Mol Microbiol. 1994 Sep;13(5):775–786. doi: 10.1111/j.1365-2958.1994.tb00470.x. [DOI] [PubMed] [Google Scholar]
  7. Eichler K., Schunck W. H., Kleber H. P., Mandrand-Berthelot M. A. Cloning, nucleotide sequence, and expression of the Escherichia coli gene encoding carnitine dehydratase. J Bacteriol. 1994 May;176(10):2970–2975. doi: 10.1128/jb.176.10.2970-2975.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engelke G., Gutowski-Eckel Z., Hammelmann M., Entian K. D. Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Appl Environ Microbiol. 1992 Nov;58(11):3730–3743. doi: 10.1128/aem.58.11.3730-3743.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilmore M. S., Segarra R. A., Booth M. C., Bogie C. P., Hall L. R., Clewell D. B. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol. 1994 Dec;176(23):7335–7344. doi: 10.1128/jb.176.23.7335-7344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grabowski R., Buckel W. Purification and properties of an iron-sulfur-containing and pyridoxal-phosphate-independent L-serine dehydratase from Peptostreptococcus asaccharolyticus. Eur J Biochem. 1991 Jul 1;199(1):89–94. doi: 10.1111/j.1432-1033.1991.tb16095.x. [DOI] [PubMed] [Google Scholar]
  11. Grabowski R., Hofmeister A. E., Buckel W. Bacterial L-serine dehydratases: a new family of enzymes containing iron-sulfur clusters. Trends Biochem Sci. 1993 Aug;18(8):297–300. doi: 10.1016/0968-0004(93)90040-t. [DOI] [PubMed] [Google Scholar]
  12. Gross E., Morell J. L., Craig L. C. Dehydroalanyllysine: identical COOH-terminal structures in the peptide antibiotics nisin and subtilin. Proc Natl Acad Sci U S A. 1969 Mar;62(3):952–956. doi: 10.1073/pnas.62.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gross E., Morell J. L. The presence of dehydroalanine in the antibiotic nisin and its relationship to activity. J Am Chem Soc. 1967 May 24;89(11):2791–2792. doi: 10.1021/ja00987a084. [DOI] [PubMed] [Google Scholar]
  14. Heck S. D., Siok C. J., Krapcho K. J., Kelbaugh P. R., Thadeio P. F., Welch M. J., Williams R. D., Ganong A. H., Kelly M. E., Lanzetti A. J. Functional consequences of posttranslational isomerization of Ser46 in a calcium channel toxin. Science. 1994 Nov 11;266(5187):1065–1068. doi: 10.1126/science.7973665. [DOI] [PubMed] [Google Scholar]
  15. Ingram L. C. Synthesis of the antibiotic nisin: formation of lanthionine and beta-methyl-lanthionine. Biochim Biophys Acta. 1969 Jun 17;184(1):216–219. doi: 10.1016/0304-4165(69)90121-4. [DOI] [PubMed] [Google Scholar]
  16. Ingram L. A ribosomal mechanism for synthesis of peptides related to nisin. Biochim Biophys Acta. 1970 Nov 12;224(1):263–265. doi: 10.1016/0005-2787(70)90642-8. [DOI] [PubMed] [Google Scholar]
  17. Jung H., Jung K., Kleber H. P. Purification and properties of carnitine dehydratase from Escherichia coli--a new enzyme of carnitine metabolization. Biochim Biophys Acta. 1989 Jun 28;1003(3):270–276. doi: 10.1016/0005-2760(89)90232-4. [DOI] [PubMed] [Google Scholar]
  18. Klein C., Kaletta C., Schnell N., Entian K. D. Analysis of genes involved in biosynthesis of the lantibiotic subtilin. Appl Environ Microbiol. 1992 Jan;58(1):132–142. doi: 10.1128/aem.58.1.132-142.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kreil G. Peptides containing a D-amino acid from frogs and molluscs. J Biol Chem. 1994 Apr 15;269(15):10967–10970. [PubMed] [Google Scholar]
  20. Kuipers O. P., Beerthuyzen M. M., Siezen R. J., De Vos W. M. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem. 1993 Aug 15;216(1):281–291. doi: 10.1111/j.1432-1033.1993.tb18143.x. [DOI] [PubMed] [Google Scholar]
  21. Kupke T., Götz F. Post-translational modifications of lantibiotics. Antonie Van Leeuwenhoek. 1996 Feb;69(2):139–150. doi: 10.1007/BF00399419. [DOI] [PubMed] [Google Scholar]
  22. Kupke T., Kempter C., Gnau V., Jung G., Götz F. Mass spectroscopic analysis of a novel enzymatic reaction. Oxidative decarboxylation of the lantibiotic precursor peptide EpiA catalyzed by the flavoprotein EpiD. J Biol Chem. 1994 Feb 25;269(8):5653–5659. [PubMed] [Google Scholar]
  23. Kupke T., Kempter C., Jung G., Götz F. Oxidative decarboxylation of peptides catalyzed by flavoprotein EpiD. Determination of substrate specificity using peptide libraries and neutral loss mass spectrometry. J Biol Chem. 1995 May 12;270(19):11282–11289. doi: 10.1074/jbc.270.19.11282. [DOI] [PubMed] [Google Scholar]
  24. Kupke T., Stevanovic S., Ottenwälder B., Metzger J. W., Jung G., Götz F. Purification and characterization of EpiA, the peptide substrate for post-translational modifications involved in epidermin biosynthesis. FEMS Microbiol Lett. 1993 Aug 15;112(1):43–48. doi: 10.1111/j.1574-6968.1993.tb06421.x. [DOI] [PubMed] [Google Scholar]
  25. Kupke T., Stevanović S., Sahl H. G., Götz F. Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol. 1992 Aug;174(16):5354–5361. doi: 10.1128/jb.174.16.5354-5361.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Langer M., Lieber A., Rétey J. Histidine ammonia-lyase mutant S143C is posttranslationally converted into fully active wild-type enzyme. Evidence for serine 143 to be the precursor of active site dehydroalanine. Biochemistry. 1994 Nov 29;33(47):14034–14038. doi: 10.1021/bi00251a011. [DOI] [PubMed] [Google Scholar]
  27. Langer M., Reck G., Reed J., Rétey J. Identification of serine-143 as the most likely precursor of dehydroalanine in the active site of histidine ammonia-lyase. A study of the overexpressed enzyme by site-directed mutagenesis. Biochemistry. 1994 May 31;33(21):6462–6467. doi: 10.1021/bi00187a011. [DOI] [PubMed] [Google Scholar]
  28. Loferer H., Hennecke H. Protein disulphide oxidoreductases in bacteria. Trends Biochem Sci. 1994 Apr;19(4):169–171. doi: 10.1016/0968-0004(94)90279-8. [DOI] [PubMed] [Google Scholar]
  29. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  30. Meyer C., Bierbaum G., Heidrich C., Reis M., Süling J., Iglesias-Wind M. I., Kempter C., Molitor E., Sahl H. G. Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC. Evidence for a role of PepC in thioether formation. Eur J Biochem. 1995 Sep 1;232(2):478–489. doi: 10.1111/j.1432-1033.1995.tb20834.x. [DOI] [PubMed] [Google Scholar]
  31. Mor A., Amiche M., Nicolas P. Enter a new post-translational modification: D-amino acids in gene-encoded peptides. Trends Biochem Sci. 1992 Dec;17(12):481–485. doi: 10.1016/0968-0004(92)90333-5. [DOI] [PubMed] [Google Scholar]
  32. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  33. Peschel A., Augustin J., Kupke T., Stevanovic S., Götz F. Regulation of epidermin biosynthetic genes by EpiQ. Mol Microbiol. 1993 Jul;9(1):31–39. doi: 10.1111/j.1365-2958.1993.tb01666.x. [DOI] [PubMed] [Google Scholar]
  34. Russel M., Model P. Replacement of the fip gene of Escherichia coli by an inactive gene cloned on a plasmid. J Bacteriol. 1984 Sep;159(3):1034–1039. doi: 10.1128/jb.159.3.1034-1039.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sahl H. G., Jack R. W., Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem. 1995 Jun 15;230(3):827–853. doi: 10.1111/j.1432-1033.1995.tb20627.x. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schnell N., Engelke G., Augustin J., Rosenstein R., Ungermann V., Götz F., Entian K. D. Analysis of genes involved in the biosynthesis of lantibiotic epidermin. Eur J Biochem. 1992 Feb 15;204(1):57–68. doi: 10.1111/j.1432-1033.1992.tb16605.x. [DOI] [PubMed] [Google Scholar]
  38. Schnell N., Entian K. D., Schneider U., Götz F., Zähner H., Kellner R., Jung G. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature. 1988 May 19;333(6170):276–278. doi: 10.1038/333276a0. [DOI] [PubMed] [Google Scholar]
  39. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  40. Shikata Y., Watanabe T., Teramoto T., Inoue A., Kawakami Y., Nishizawa Y., Katayama K., Kuwada M. Isolation and characterization of a peptide isomerase from funnel web spider venom. J Biol Chem. 1995 Jul 14;270(28):16719–16723. doi: 10.1074/jbc.270.28.16719. [DOI] [PubMed] [Google Scholar]
  41. Skaugen M., Nissen-Meyer J., Jung G., Stevanovic S., Sletten K., Inger C., Abildgaard M., Nes I. F. In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide. J Biol Chem. 1994 Nov 4;269(44):27183–27185. [PubMed] [Google Scholar]
  42. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tomkinson B., Grehn L., Fransson B., Zetterqvist O. Use of a dehydroalanine-containing peptide as an efficient inhibitor of tripeptidyl peptidase II. Arch Biochem Biophys. 1994 Nov 1;314(2):276–279. doi: 10.1006/abbi.1994.1442. [DOI] [PubMed] [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weil H. P., Beck-Sickinger A. G., Metzger J., Stevanovic S., Jung G., Josten M., Sahl H. G. Biosynthesis of the lantibiotic Pep5. Isolation and characterization of a prepeptide containing dehydroamino acids. Eur J Biochem. 1990 Nov 26;194(1):217–223. doi: 10.1111/j.1432-1033.1990.tb19446.x. [DOI] [PubMed] [Google Scholar]
  46. Wickner R. B. Dehydroalanine in histidine ammonia lyase. J Biol Chem. 1969 Dec 10;244(23):6550–6552. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES