Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Mar;178(5):1386–1393. doi: 10.1128/jb.178.5.1386-1393.1996

Characterization of a glutathione-dependent formaldehyde dehydrogenase from Rhodobacter sphaeroides.

R D Barber 1, M A Rott 1, T J Donohue 1
PMCID: PMC177813  PMID: 8631716

Abstract

Glutathione-dependent formaldehyde dehydrogenases (GSH-FDH) represent a ubiquitous class of enzymes, found in both prokaryotes and eukaryotes. During the course of studying energy-generating pathways in the photosynthetic bacterium Rhodobacter sphaeroides, a gene (adhI) encoding a GSH-FDH homolog has been identified as part of an operon (adhI-cycI) that also encodes an isoform of the cytochrome c2 family of electron transport proteins (isocytochrome c2). Enzyme assays with crude Escherichia coli extracts expressing AdhI show that this protein has the characteristic substrate preference of a GSH-FDH. Ferguson plot analysis with zymograms suggests that the functional form of AdhI is a homodimer of approximately40-kDa subunits, analogous to other GSH-FDH enzymes. These properties of AdhI were used to show that mutations which increase or decrease adhI expression change the specific activity of GSH-FDH in R. sphaeroides extracts. In addition, expression of the presumed adhI-cycI operon appears to be transcriptionally regulated, since the abundance of the major adhI-specific primer extension product is increased by the trans-acting spd-7 mutation, which increases the level of both isocytochrome c2 and AdhI activity. While transcriptional linkage of adhI and cycI could suggest a function in a common metabolic pathway, isocytochrome c2 (periplasm) and AdhI (cytoplasm) are localized in separate compartments of R. sphaeroides. Potential roles for AdhI in carbon and energy generation and the possible relationship of GSH-FDH activity to isocytochrome c2 will be discussed based on the commonly accepted physiological functions of GSH-FDH enzymes in prokaryotes and eukaryotes.

Full Text

The Full Text of this article is available as a PDF (370.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Danielsson O., Atrian S., Luque T., Hjelmqvist L., Gonzàlez-Duarte R., Jörnvall H. Fundamental molecular differences between alcohol dehydrogenase classes. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4980–4984. doi: 10.1073/pnas.91.11.4980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Donohue T. J., McEwan A. G., Van Doren S., Crofts A. R., Kaplan S. Phenotypic and genetic characterization of cytochrome c2 deficient mutants of Rhodobacter sphaeroides. Biochemistry. 1988 Mar 22;27(6):1918–1925. doi: 10.1021/bi00406a018. [DOI] [PubMed] [Google Scholar]
  4. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
  5. Engeland K., Hög J. O., Holmquist B., Estonius M., Jörnvall H., Vallee B. L. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2491–2494. doi: 10.1073/pnas.90.6.2491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FERGUSON K. A. STARCH-GEL ELECTROPHORESIS--APPLICATION TO THE CLASSIFICATION OF PITUITARY PROTEINS AND POLYPEPTIDES. Metabolism. 1964 Oct;13:SUPPL–SUPPL1002. doi: 10.1016/s0026-0495(64)80018-4. [DOI] [PubMed] [Google Scholar]
  7. Giri P. R., Krug J. F., Kozak C., Moretti T., O'Brien S. J., Seuanez H. N., Goldman D. Cloning and comparative mapping of a human class III (chi) alcohol dehydrogenase cDNA. Biochem Biophys Res Commun. 1989 Oct 16;164(1):453–460. doi: 10.1016/0006-291x(89)91741-5. [DOI] [PubMed] [Google Scholar]
  8. Gutheil W. G., Holmquist B., Vallee B. L. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry. 1992 Jan 21;31(2):475–481. doi: 10.1021/bi00117a025. [DOI] [PubMed] [Google Scholar]
  9. Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
  10. Holmquist B., Moulis J. M., Engeland K., Vallee B. L. Role of arginine 115 in fatty acid activation and formaldehyde dehydrogenase activity of human class III alcohol dehydrogenase. Biochemistry. 1993 May 18;32(19):5139–5144. doi: 10.1021/bi00070a024. [DOI] [PubMed] [Google Scholar]
  11. Hur M. W., Edenberg H. J. Cloning and characterization of the ADH5 gene encoding human alcohol dehydrogenase 5, formaldehyde dehydrogenase. Gene. 1992 Nov 16;121(2):305–311. doi: 10.1016/0378-1119(92)90135-c. [DOI] [PubMed] [Google Scholar]
  12. Julià P., Farrés J., Parés X. Characterization of three isoenzymes of rat alcohol dehydrogenase. Tissue distribution and physical and enzymatic properties. Eur J Biochem. 1987 Jan 2;162(1):179–189. doi: 10.1111/j.1432-1033.1987.tb10559.x. [DOI] [PubMed] [Google Scholar]
  13. Jörnvall H., Persson B., Jeffery J. Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur J Biochem. 1987 Sep 1;167(2):195–201. doi: 10.1111/j.1432-1033.1987.tb13323.x. [DOI] [PubMed] [Google Scholar]
  14. Kaiser R., Holmquist B., Vallee B. L., Jörnvall H. Characteristics of mammalian class III alcohol dehydrogenases, an enzyme less variable than the traditional liver enzyme of class I. Biochemistry. 1989 Oct 17;28(21):8432–8438. doi: 10.1021/bi00447a024. [DOI] [PubMed] [Google Scholar]
  15. Kaulfers P. M., Marquardt A. Demonstration of formaldehyde dehydrogenase activity in formaldehyde-resistant Enterobacteriaceae. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):335–338. doi: 10.1016/0378-1097(91)90108-m. [DOI] [PubMed] [Google Scholar]
  16. Markwell J. P., Lascelles J. Membrane-bound, pyridine nucleotide-independent L-lactate dehydrogenase of Rhodopseudomonas sphaeroides. J Bacteriol. 1978 Feb;133(2):593–600. doi: 10.1128/jb.133.2.593-600.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  18. Mason R. P., Sanders J. K., Crawford A., Hunter B. K. Formaldehyde metabolism by Escherichia coli. Detection by in vivo 13C NMR spectroscopy of S-(hydroxymethyl)glutathione as a transient intracellular intermediate. Biochemistry. 1986 Aug 12;25(16):4504–4507. doi: 10.1021/bi00364a008. [DOI] [PubMed] [Google Scholar]
  19. Patel R. N., Hou C. T., Derelanko P. Microbial oxidation of methanol: purification and properties of formaldehyde dehydrogenase from a Pichia sp. NRRL-Y-11328. Arch Biochem Biophys. 1983 Feb 15;221(1):135–142. doi: 10.1016/0003-9861(83)90129-7. [DOI] [PubMed] [Google Scholar]
  20. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  21. Ramaswamy S., el-Ahmad M., Danielsson O., Jörnvall H., Eklund H. Crystallisation and crystallographic investigations of cod alcohol dehydrogenase class I and class III enzymes. FEBS Lett. 1994 Aug 15;350(1):122–124. doi: 10.1016/0014-5793(94)00746-2. [DOI] [PubMed] [Google Scholar]
  22. Ras J., Van Ophem P. W., Reijnders W. N., Van Spanning R. J., Duine J. A., Stouthamer A. H., Harms N. Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J Bacteriol. 1995 Jan;177(1):247–251. doi: 10.1128/jb.177.1.247-251.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rott M. A., Donohue T. J. Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth. J Bacteriol. 1990 Apr;172(4):1954–1961. doi: 10.1128/jb.172.4.1954-1961.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rott M. A., Fitch J., Meyer T. E., Donohue T. J. Regulation of a cytochrome c2 isoform in wild-type and cytochrome c2 mutant strains of Rhodobacter sphaeroides. Arch Biochem Biophys. 1992 Feb 1;292(2):576–582. doi: 10.1016/0003-9861(92)90033-s. [DOI] [PubMed] [Google Scholar]
  25. Rott M. A., Witthuhn V. C., Schilke B. A., Soranno M., Ali A., Donohue T. J. Genetic evidence for the role of isocytochrome c2 in photosynthetic growth of Rhodobacter sphaeroides Spd mutants. J Bacteriol. 1993 Jan;175(2):358–366. doi: 10.1128/jb.175.2.358-366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SISTROM W. R. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol. 1960 Jun;22:778–785. doi: 10.1099/00221287-22-3-778. [DOI] [PubMed] [Google Scholar]
  27. Sahm H., Cox R. B., Quayle J. R. Metabolism of methanol by Rhodopseudomonas acidophila. J Gen Microbiol. 1976 Jun;94(2):313–322. doi: 10.1099/00221287-94-2-313. [DOI] [PubMed] [Google Scholar]
  28. Sasnauskas K., Jomantiene R., Januska A., Lebediene E., Lebedys J., Janulaitis A. Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene. 1992 Dec 1;122(1):207–211. doi: 10.1016/0378-1119(92)90052-q. [DOI] [PubMed] [Google Scholar]
  29. Satre M. A., Zgombić-Knight M., Duester G. The complete structure of human class IV alcohol dehydrogenase (retinol dehydrogenase) determined from the ADH7 gene. J Biol Chem. 1994 Jun 3;269(22):15606–15612. [PubMed] [Google Scholar]
  30. Sharma C. P., Fox E. A., Holmquist B., Jörnvall H., Vallee B. L. cDNA sequence of human class III alcohol dehydrogenase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):631–637. doi: 10.1016/0006-291x(89)91507-6. [DOI] [PubMed] [Google Scholar]
  31. Tai S. P., Kaplan S. Intracellular localization of phospholipid transfer activity in Rhodopseudomonas sphaeroides and a possible role in membrane biogenesis. J Bacteriol. 1985 Oct;164(1):181–186. doi: 10.1128/jb.164.1.181-186.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Uotila L., Koivusalo M. Formaldehyde dehydrogenase. Methods Enzymol. 1981;77:314–320. doi: 10.1016/s0076-6879(81)77044-7. [DOI] [PubMed] [Google Scholar]
  33. Uotila L., Koivusalo M. Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch Biochem Biophys. 1979 Aug;196(1):33–45. doi: 10.1016/0003-9861(79)90548-4. [DOI] [PubMed] [Google Scholar]
  34. Uotila L., Mannervik B. A steady-state-kinetic model for formaldehyde dehydrogenase from human liver. A mechanism involving NAD+ and the hemimercaptal adduct of glutathione and formaldehyde as substrates and free glutathione as an allosteric activator of the enzyme. Biochem J. 1979 Mar 1;177(3):869–878. doi: 10.1042/bj1770869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wagner F. W., Parés X., Holmquist B., Vallee B. L. Physical and enzymatic properties of a class III isozyme of human liver alcohol dehydrogenase: chi-ADH. Biochemistry. 1984 May 8;23(10):2193–2199. doi: 10.1021/bi00305a014. [DOI] [PubMed] [Google Scholar]
  36. Weaver C. A., Lidstrom M. E. Methanol dissimilation in Xanthobacter H4-14: activities, induction and comparison to Pseudomonas AM1 and Paracoccus denitrificans. J Gen Microbiol. 1985 Sep;131(9):2183–2197. doi: 10.1099/00221287-131-9-2183. [DOI] [PubMed] [Google Scholar]
  37. Wehner E. P., Rao E., Brendel M. Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product. Mol Gen Genet. 1993 Mar;237(3):351–358. doi: 10.1007/BF00279438. [DOI] [PubMed] [Google Scholar]
  38. Zhu Y. S., Kaplan S. Effects of light, oxygen, and substrates on steady-state levels of mRNA coding for ribulose-1,5-bisphosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. J Bacteriol. 1985 Jun;162(3):925–932. doi: 10.1128/jb.162.3.925-932.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES