Abstract
We examined the functional attributes of a gene encountered by sequencing the streptokinase gene region of Streptococcus equisimilis H46A. This gene, originally called rel, here termed relS. equisimilis, is homologous to two related Escherichia coli genes, spoT and relA, that function in the metabolism of guanosine 5',3'-polyphosphates [(p)ppGpp]. Studies with a variety of E. coli mutants led us to deduce that the highly expressed rel S. equisimilis gene encodes a strong (p)ppGppase and a weaker (p)ppGpp synthetic activity, much like the spoT gene, with a net effect favoring degradation and no complementation of the absence of the relA gene. We verified that the Rel S. equisimilis protein, purified from an E. coli relA spoT double mutant, catalyzed a manganese-activated (p)ppGpp 3'-pyrophosphohydrolase reaction similar to that of the SpoT enzyme. This Rel S. equisimilis protein preparation also weakly catalyzed a ribosome-independent synthesis of (p)ppGpp by an ATP to GTP 3'-pyrophosphoryltransferase reaction when degradation was restricted by the absence of manganese ions. An analogous activity has been deduced for the SpoT protein from genetic evidence. In addition, the Rel S. equisimilis protein displays immunological cross-reactivity with polyclonal antibodies specific for SpoT but not for RelA. Despite assignment of rel S. equisimilis gene function in E. coli as being similar to that of the native spoT gene, disruptions of rel S. equisimilis in S. equisimilis abolish the parental (p)ppGpp accumulation response to amino acid starvation in a manner expected for relA mutants rather than spoT mutants.
Full Text
The Full Text of this article is available as a PDF (474.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acosta R., Lueking D. R. Stringency in the absence of ppGpp accumulation in Rhodobacter sphaeroides. J Bacteriol. 1987 Feb;169(2):908–912. doi: 10.1128/jb.169.2.908-912.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beauclerk A. A., Hummel H., Holmes D. J., Böck A., Cundliffe E. Studies of the GTPase domain of archaebacterial ribosomes. Eur J Biochem. 1985 Sep 2;151(2):245–255. doi: 10.1111/j.1432-1033.1985.tb09095.x. [DOI] [PubMed] [Google Scholar]
- Belitskii B. R., Shakulov R. S. Klonirovanie gena gpp Escherichia coli i ispol'zovanie kletok recBC, sbcB dlia vvedeniia ego mutantnogo allelia v sostav khromosomy. Genetika. 1988 Aug;24(8):1333–1342. [PubMed] [Google Scholar]
- Belitskii B. R., Shakulov R. S. Rol' produkta gena spoT v degradatsii pppGpp u bakterii. Mol Biol (Mosk) 1982 Jul-Aug;16(4):857–864. [PubMed] [Google Scholar]
- Belitskii B. R., Shakulov R. S. Soderzhanie guanozinpolifosfatov i sintez stabil'noi RNK v kletkakh Bacillus subtilis pri podavlenii sinteza belka. Mol Biol (Mosk) 1980 Nov-Dec;14(6):1342–1353. [PubMed] [Google Scholar]
- Cashel M., Kalbacher B. The control of ribonucleic acid synthesis in Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J Biol Chem. 1970 May 10;245(9):2309–2318. [PubMed] [Google Scholar]
- Cashel M., Lazzarini R. A., Kalbacher B. An improved method for thin-layer chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J Chromatogr. 1969 Mar 11;40(1):103–109. doi: 10.1016/s0021-9673(01)96624-5. [DOI] [PubMed] [Google Scholar]
- Cashel M. Preparation of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) from Escherichia coli ribosomes. Anal Biochem. 1974 Jan;57(1):100–107. doi: 10.1016/0003-2697(74)90056-6. [DOI] [PubMed] [Google Scholar]
- Cimmino C., Scoarughi G. L., Donini P. Stringency and relaxation among the halobacteria. J Bacteriol. 1993 Oct;175(20):6659–6662. doi: 10.1128/jb.175.20.6659-6662.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cochran J. W., Byrne R. W. Isolation and properties of a ribosome-bound factor required for ppGpp and ppGpp synthesis in Escherichia coli. J Biol Chem. 1974 Jan 25;249(2):353–360. [PubMed] [Google Scholar]
- Fehr S., Richter D. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases. J Bacteriol. 1981 Jan;145(1):68–73. doi: 10.1128/jb.145.1.68-73.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiil N. P., Willumsen B. M., Friesen J. D., von Meyenburg K. Interaction of alleles of the relA, relC and spoT genes in Escherichia coli: analysis of the interconversion of GTP, ppGpp and pppGpp. Mol Gen Genet. 1977 Jan 7;150(1):87–101. doi: 10.1007/BF02425329. [DOI] [PubMed] [Google Scholar]
- Flärdh K., Axberg T., Albertson N. H., Kjelleberg S. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J Bacteriol. 1994 Oct;176(19):5949–5957. doi: 10.1128/jb.176.19.5949-5957.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallant J., Margason G., Finch B. On the turnover of ppGpp in Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6055–6058. [PubMed] [Google Scholar]
- Gentry D. R., Cashel M. Cellular localization of the Escherichia coli SpoT protein. J Bacteriol. 1995 Jul;177(13):3890–3893. doi: 10.1128/jb.177.13.3890-3893.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentry D. R., Hernandez V. J., Nguyen L. H., Jensen D. B., Cashel M. Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol. 1993 Dec;175(24):7982–7989. doi: 10.1128/jb.175.24.7982-7989.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman E., Jakubowski H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol. 1990 Dec;4(12):2035–2040. doi: 10.1111/j.1365-2958.1990.tb00563.x. [DOI] [PubMed] [Google Scholar]
- Gropp M., Eizenman E., Glaser G., Samarrai W., Rudner R. A relA(S) suppressor mutant allele of Bacillus subtilis which maps to relA and responds only to carbon limitation. Gene. 1994 Mar 11;140(1):91–96. doi: 10.1016/0378-1119(94)90736-6. [DOI] [PubMed] [Google Scholar]
- Hara A., Sy J. Guanosine 5'-triphosphate, 3'-diphosphate 5'-phosphohydrolase. Purification and substrate specificity. J Biol Chem. 1983 Feb 10;258(3):1678–1683. [PubMed] [Google Scholar]
- Haseltine W. A., Block R., Gilbert W., Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972 Aug 18;238(5364):381–384. doi: 10.1038/238381a0. [DOI] [PubMed] [Google Scholar]
- Haseltine W. A., Block R. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1564–1568. doi: 10.1073/pnas.70.5.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinemeyer E. A., Geis M., Richter D. Degradation of guanosine 3'-diphosphate 5'-diphosphate in vitro by the spoT gene product of Escherichia coli. Eur J Biochem. 1978 Aug 15;89(1):125–131. doi: 10.1111/j.1432-1033.1978.tb20904.x. [DOI] [PubMed] [Google Scholar]
- Heinemeyer E. A., Richter D. Characterization of the guanosine 5'-triphosphate 3'-diphosphate and guanosine 5'-diphosphate 3'-diphosphate degradation reaction catalyzed by a specific pyrophosphorylase from Escherichia coli. Biochemistry. 1978 Dec 12;17(25):5368–5372. doi: 10.1021/bi00618a007. [DOI] [PubMed] [Google Scholar]
- Heinemeyer E. A., Richter D. Mechanism of the in vitro breakdown of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4180–4183. doi: 10.1073/pnas.75.9.4180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hernandez V. J., Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem. 1991 Mar 25;266(9):5991–5999. [PubMed] [Google Scholar]
- Johnson G. S., Adler C. R., Collins J. J., Court D. Role of the spoT gene product and manganese ion in the metabolism of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli. J Biol Chem. 1979 Jun 25;254(12):5483–5487. [PubMed] [Google Scholar]
- Jones G. H. Purification and properties of ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase) from Streptomyces antibioticus. J Bacteriol. 1994 Mar;176(5):1475–1481. doi: 10.1128/jb.176.5.1475-1481.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalman M., Murphy H., Cashel M. rhlB, a new Escherichia coli K-12 gene with an RNA helicase-like protein sequence motif, one of at least five such possible genes in a prokaryote. New Biol. 1991 Sep;3(9):886–895. [PubMed] [Google Scholar]
- Kaplan S., Atherly A. G., Barrett A. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA. Proc Natl Acad Sci U S A. 1973 Mar;70(3):689–692. doi: 10.1073/pnas.70.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kari C., Török I., Travers A. ppGpp cycle in Escherichia coli. Mol Gen Genet. 1977 Feb 15;150(3):249–255. doi: 10.1007/BF00268123. [DOI] [PubMed] [Google Scholar]
- Keasling J. D., Bertsch L., Kornberg A. Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7029–7033. doi: 10.1073/pnas.90.15.7029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipmann F., Sy J. The enzymic mechanism of guanosine 5',3'-polyphosphate synthesis. Prog Nucleic Acid Res Mol Biol. 1976;17:1–14. doi: 10.1016/s0079-6603(08)60063-x. [DOI] [PubMed] [Google Scholar]
- Macrina F. L., Evans R. P., Tobian J. A., Hartley D. L., Clewell D. B., Jones K. R. Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgeneric cloning. Gene. 1983 Nov;25(1):145–150. doi: 10.1016/0378-1119(83)90176-2. [DOI] [PubMed] [Google Scholar]
- Mechold U., Steiner K., Vettermann S., Malke H. Genetic organization of the streptokinase region of the Streptococcus equisimilis H46A chromosome. Mol Gen Genet. 1993 Oct;241(1-2):129–140. doi: 10.1007/BF00280210. [DOI] [PubMed] [Google Scholar]
- Metzger S., Dror I. B., Aizenman E., Schreiber G., Toone M., Friesen J. D., Cashel M., Glaser G. The nucleotide sequence and characterization of the relA gene of Escherichia coli. J Biol Chem. 1988 Oct 25;263(30):15699–15704. [PubMed] [Google Scholar]
- Metzger S., Sarubbi E., Glaser G., Cashel M. Protein sequences encoded by the relA and the spoT genes of Escherichia coli are interrelated. J Biol Chem. 1989 Jun 5;264(16):9122–9125. [PubMed] [Google Scholar]
- Metzger S., Schreiber G., Aizenman E., Cashel M., Glaser G. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):21146–21152. [PubMed] [Google Scholar]
- Muta S., Osoegawa K., Ezaki S., Zubair M., Kuhara S., Mukai J., Dixon R. Streptomyces ATP nucleotide 3'-pyrophosphokinase and its gene. Nucleic Acids Symp Ser. 1992;(27):165–166. [PubMed] [Google Scholar]
- Ochi K. Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J Gen Microbiol. 1986 Sep;132(9):2621–2631. doi: 10.1099/00221287-132-9-2621. [DOI] [PubMed] [Google Scholar]
- Pedersen F. S., Kjeldgaard N. O. Analysis of the relA gene product of Escherichia coli. Eur J Biochem. 1977 Jun 1;76(1):91–97. doi: 10.1111/j.1432-1033.1977.tb11573.x. [DOI] [PubMed] [Google Scholar]
- Richter D., Fehr S., Harder R. The guanosine 3',5'-bis(diphosphate) (ppGpp) cycle. Comparison of synthesis and degradation of guanosine 3',5'-bis(diphosphate) in various bacterial systems. Eur J Biochem. 1979 Aug 15;99(1):57–64. doi: 10.1111/j.1432-1033.1979.tb13230.x. [DOI] [PubMed] [Google Scholar]
- Richter D. In vitro degradation of guanosine 3',5'-bis(diphosphate) [ppGpp] by the spoT gene product [ppGppase] from auxotrophic strains of Escherichia coli: effects of various antibiotics and drugs. Arch Microbiol. 1980 Feb;124(2-3):229–232. doi: 10.1007/BF00427731. [DOI] [PubMed] [Google Scholar]
- Rudd K. E., Bochner B. R., Cashel M., Roth J. R. Mutations in the spoT gene of Salmonella typhimurium: effects on his operon expression. J Bacteriol. 1985 Aug;163(2):534–542. doi: 10.1128/jb.163.2.534-542.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarubbi E., Rudd K. E., Cashel M. Basal ppGpp level adjustment shown by new spoT mutants affect steady state growth rates and rrnA ribosomal promoter regulation in Escherichia coli. Mol Gen Genet. 1988 Aug;213(2-3):214–222. doi: 10.1007/BF00339584. [DOI] [PubMed] [Google Scholar]
- Sarubbi E., Rudd K. E., Xiao H., Ikehara K., Kalman M., Cashel M. Characterization of the spoT gene of Escherichia coli. J Biol Chem. 1989 Sep 5;264(25):15074–15082. [PubMed] [Google Scholar]
- Schreiber G., Metzger S., Aizenman E., Roza S., Cashel M., Glaser G. Overexpression of the relA gene in Escherichia coli. J Biol Chem. 1991 Feb 25;266(6):3760–3767. [PubMed] [Google Scholar]
- Silverman R. H., Atherly A. G. The search for guanosine tetraphosphate (ppGpp) and other unusual nucleotides in eucaryotes. Microbiol Rev. 1979 Mar;43(1):27–41. doi: 10.1128/mr.43.1.27-41.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville C. R., Ahmed A. Mutants of Escherichia coli defective in the degradation of guanosine 5'-triphosphate, 3'-diphosphate (pppGpp). Mol Gen Genet. 1979 Feb 1;169(3):315–323. doi: 10.1007/BF00382277. [DOI] [PubMed] [Google Scholar]
- Svitil A. L., Cashel M., Zyskind J. W. Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem. 1993 Feb 5;268(4):2307–2311. [PubMed] [Google Scholar]
- Swanton M., Edlin G. Isolation and characterization of an RNA relaxed mutant of B. subtilis. Biochem Biophys Res Commun. 1972 Jan 31;46(2):583–588. doi: 10.1016/s0006-291x(72)80179-7. [DOI] [PubMed] [Google Scholar]
- Sy J., Akers H. Purification and properties of guanosine 5', 3'-polyphosphate synthetase from Bacillus brevis. Biochemistry. 1976 Oct 5;15(20):4399–4403. doi: 10.1021/bi00665a008. [DOI] [PubMed] [Google Scholar]
- Sy J. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5529–5533. doi: 10.1073/pnas.74.12.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sy J., Lipmann F. Identification of the synthesis of guanosine tetraphosphate (MS I) as insertion of a pyrophosphoryl group into the 3'-position in guanosine 5'-diphosphate. Proc Natl Acad Sci U S A. 1973 Feb;70(2):306–309. doi: 10.1073/pnas.70.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tosa T., Pizer L. I. Biochemical bases for the antimetabolite action of L-serine hydroxamate. J Bacteriol. 1971 Jun;106(3):972–982. doi: 10.1128/jb.106.3.972-982.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uzan M., Danchin A. A rapid test for the rel A mutation in E. coli. Biochem Biophys Res Commun. 1976 Apr 5;69(3):751–758. doi: 10.1016/0006-291x(76)90939-6. [DOI] [PubMed] [Google Scholar]
- Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem. 1991 Mar 25;266(9):5980–5990. [PubMed] [Google Scholar]
- van de Rijn I., Kessler R. E. Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun. 1980 Feb;27(2):444–448. doi: 10.1128/iai.27.2.444-448.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]