Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Mar;178(6):1515–1524. doi: 10.1128/jb.178.6.1515-1524.1996

Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme.

J D Fox 1, R L Kerby 1, G P Roberts 1, P W Ludden 1
PMCID: PMC177833  PMID: 8626276

Abstract

In the presence of carbon monoxide, the photosynthetic bacterium Rhodospirillum rubrum induces expression of proteins which allow the organism to metabolize carbon monoxide in the net reaction CO + H2O --> CO2 + H2. These proteins include the enzymes carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. In this paper, we present the complete amino acid sequence for the large subunit of this hydrogenase and describe the properties of the crude enzyme in relation to other known hydrogenases. The amino acid sequence deduced from the CO-induced hydrogenase large-subunit gene (cooH) shows significant similarity to large subunits of other Ni-Fe hydrogenases. The closest similarity is with HycE (58% similarity and 37% identity) from Escherichia coli, which is the large subunit of an Ni-Fe hydrogenase (isoenzyme 3). The properties of the CO-induced hydrogenase are unique. It is exceptionally resistant to inhibition by carbon monoxide. It also exhibits a very high ratio of H2 evolution to H2 uptake activity compared with other known hydrogenases. The CO-induced hydrogenase is tightly membrane bound, and its inhibition by nonionic detergents is described. Finally, the presence of nickel in the hydrogenase is addressed. Analysis of wild-type R. rubrum grown on nickel-depleted medium indicates a requirement for nickel for hydrogenase activity. However, analysis of strain UR294 (cooC insertion mutant defective in nickel insertion into CODH) shows that independent nickel insertion mechanisms are utilized by hydrogenase and CODH. CooH lacks the C-terminal peptide that is found in other Ni-Fe hydrogenases; in other systems, this peptide is cleaved during Ni processing.

Full Text

The Full Text of this article is available as a PDF (312.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Hall D. O. Properties of the solubilized membrane-bound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Arch Biochem Biophys. 1979 Jul;195(2):288–299. doi: 10.1016/0003-9861(79)90355-2. [DOI] [PubMed] [Google Scholar]
  2. Adams M. W., Mortenson L. E. The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. A comparison with hydrogenase I. J Biol Chem. 1984 Jun 10;259(11):7045–7055. [PubMed] [Google Scholar]
  3. Adams M. W. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta. 1990 Nov 5;1020(2):115–145. doi: 10.1016/0005-2728(90)90044-5. [DOI] [PubMed] [Google Scholar]
  4. Albracht S. P. Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH: ubiquinone oxidoreductase. Biochim Biophys Acta. 1993 Sep 13;1144(2):221–224. doi: 10.1016/0005-2728(93)90176-g. [DOI] [PubMed] [Google Scholar]
  5. Arp D. J., Burris R. H. Kinetic mechanism of the hydrogen-oxidizing hydrogenase from soybean nodule bacteroids. Biochemistry. 1981 Apr 14;20(8):2234–2240. doi: 10.1021/bi00511a025. [DOI] [PubMed] [Google Scholar]
  6. Arp D. J., Burris R. H. Purification and properties of the particulate hydrogenase from the bacteroids of soybean root nodules. Biochim Biophys Acta. 1979 Oct 11;570(2):221–230. doi: 10.1016/0005-2744(79)90142-6. [DOI] [PubMed] [Google Scholar]
  7. Arp D. J., McCollum L. C., Seefeldt L. C. Molecular and immunological comparison of membrane-bound, H2-oxidizing hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii. J Bacteriol. 1985 Jul;163(1):15–20. doi: 10.1128/jb.163.1.15-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Black L. K., Fu C., Maier R. J. Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol. 1994 Nov;176(22):7102–7106. doi: 10.1128/jb.176.22.7102-7106.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bonam D., Lehman L., Roberts G. P., Ludden P. W. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity. J Bacteriol. 1989 Jun;171(6):3102–3107. doi: 10.1128/jb.171.6.3102-3107.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bonam D., Ludden P. W. Purification and characterization of carbon monoxide dehydrogenase, a nickel, zinc, iron-sulfur protein, from Rhodospirillum rubrum. J Biol Chem. 1987 Mar 5;262(7):2980–2987. [PubMed] [Google Scholar]
  11. Bonam D., McKenna M. C., Stephens P. J., Ludden P. W. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Proc Natl Acad Sci U S A. 1988 Jan;85(1):31–35. doi: 10.1073/pnas.85.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Böhm R., Sauter M., Böck A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol. 1990 Feb;4(2):231–243. doi: 10.1111/j.1365-2958.1990.tb00590.x. [DOI] [PubMed] [Google Scholar]
  13. Ensign S. A., Campbell M. J., Ludden P. W. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: kinetic characterization and reductant requirement. Biochemistry. 1990 Feb 27;29(8):2162–2168. doi: 10.1021/bi00460a029. [DOI] [PubMed] [Google Scholar]
  14. Ensign S. A., Hyman M. R., Ludden P. W. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry. 1989 Jun 13;28(12):4973–4979. doi: 10.1021/bi00438a011. [DOI] [PubMed] [Google Scholar]
  15. Ensign S. A., Ludden P. W. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem. 1991 Sep 25;266(27):18395–18403. [PubMed] [Google Scholar]
  16. Falcone D. L., Tabita F. R. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. J Bacteriol. 1993 Aug;175(16):5066–5077. doi: 10.1128/jb.175.16.5066-5077.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fauque G., Peck H. D., Jr, Moura J. J., Huynh B. H., Berlier Y., DerVartanian D. V., Teixeira M., Przybyla A. E., Lespinat P. A., Moura I. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev. 1988 Dec;4(4):299–344. doi: 10.1111/j.1574-6968.1988.tb02748.x. [DOI] [PubMed] [Google Scholar]
  18. Grunwald S. K., Lies D. P., Roberts G. P., Ludden P. W. Posttranslational regulation of nitrogenase in Rhodospirillum rubrum strains overexpressing the regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase activating glycohydrolase. J Bacteriol. 1995 Feb;177(3):628–635. doi: 10.1128/jb.177.3.628-635.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobi A., Rossmann R., Böck A. The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol. 1992;158(6):444–451. doi: 10.1007/BF00276307. [DOI] [PubMed] [Google Scholar]
  20. Kerby R. L., Hong S. S., Ensign S. A., Coppoc L. J., Ludden P. W., Roberts G. P. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J Bacteriol. 1992 Aug;174(16):5284–5294. doi: 10.1128/jb.174.16.5284-5294.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kerby R. L., Ludden P. W., Roberts G. P. Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol. 1995 Apr;177(8):2241–2244. doi: 10.1128/jb.177.8.2241-2244.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kortlüke C., Friedrich B. Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus H16. J Bacteriol. 1992 Oct;174(19):6290–6293. doi: 10.1128/jb.174.19.6290-6293.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kow Y. W., Burris R. H. Purification and properties of membrane-bound hydrogenase from Azotobacter vinelandii. J Bacteriol. 1984 Aug;159(2):564–569. doi: 10.1128/jb.159.2.564-569.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leclerc M., Colbeau A., Cauvin B., Vignais P. M. Cloning and sequencing of the genes encoding the large and the small subunits of the H2 uptake hydrogenase (hup) of Rhodobacter capsulatus. Mol Gen Genet. 1988 Sep;214(1):97–107. doi: 10.1007/BF00340186. [DOI] [PubMed] [Google Scholar]
  25. Li C., Peck H. D., Jr, LeGall J., Przybyla A. E. Cloning, characterization, and sequencing of the genes encoding the large and small subunits of the periplasmic [NiFe]hydrogenase of Desulfovibrio gigas. DNA. 1987 Dec;6(6):539–551. doi: 10.1089/dna.1987.6.539. [DOI] [PubMed] [Google Scholar]
  26. Ludden P. W., Burris R. H. Purification and properties of nitrogenase from Rhodospirillum rubrum, and evidence for phosphate, ribose and an adenine-like unit covalently bound to the iron protein. Biochem J. 1978 Oct 1;175(1):251–259. doi: 10.1042/bj1750251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McTavish H., Sayavedra-Soto L. A., Arp D. J. Substitution of Azotobacter vinelandii hydrogenase small-subunit cysteines by serines can create insensitivity to inhibition by O2 and preferentially damages H2 oxidation over H2 evolution. J Bacteriol. 1995 Jul;177(14):3960–3964. doi: 10.1128/jb.177.14.3960-3964.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Menon A. L., Robson R. L. In vivo and in vitro nickel-dependent processing of the [NiFe] hydrogenase in Azotobacter vinelandii. J Bacteriol. 1994 Jan;176(2):291–295. doi: 10.1128/jb.176.2.291-295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Menon A. L., Stults L. W., Robson R. L., Mortenson L. E. Cloning, sequencing and characterization of the [NiFe]hydrogenase-encoding structural genes (hoxK and hoxG) from Azotobacter vinelandii. Gene. 1990 Nov 30;96(1):67–74. doi: 10.1016/0378-1119(90)90342-o. [DOI] [PubMed] [Google Scholar]
  30. Przybyla A. E., Robbins J., Menon N., Peck H. D., Jr Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol Rev. 1992 Feb;8(2):109–135. doi: 10.1111/j.1574-6968.1992.tb04960.x. [DOI] [PubMed] [Google Scholar]
  31. Rossmann R., Maier T., Lottspeich F., Böck A. Characterisation of a protease from Escherichia coli involved in hydrogenase maturation. Eur J Biochem. 1995 Jan 15;227(1-2):545–550. doi: 10.1111/j.1432-1033.1995.tb20422.x. [DOI] [PubMed] [Google Scholar]
  32. Rossmann R., Sauter M., Lottspeich F., Böck A. Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem. 1994 Mar 1;220(2):377–384. doi: 10.1111/j.1432-1033.1994.tb18634.x. [DOI] [PubMed] [Google Scholar]
  33. Sauter M., Böhm R., Böck A. Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol. 1992 Jun;6(11):1523–1532. doi: 10.1111/j.1365-2958.1992.tb00873.x. [DOI] [PubMed] [Google Scholar]
  34. Sayavedra-Soto L. A., Powell G. K., Evans H. J., Morris R. O. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8395–8399. doi: 10.1073/pnas.85.22.8395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schneider K., Cammack R., Schlegel H. G., Hall D. O. The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim Biophys Acta. 1979 Jun 19;578(2):445–461. doi: 10.1016/0005-2795(79)90175-2. [DOI] [PubMed] [Google Scholar]
  36. Schön G., Voelskow H. Pyruvate fermentation in Rhodospirillum rubrum and after transfer from aerobic to anaerobic conditions in the dark. Arch Microbiol. 1976 Feb;107(1):87–92. doi: 10.1007/BF00427872. [DOI] [PubMed] [Google Scholar]
  37. Shelver D., Kerby R. L., He Y., Roberts G. P. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol. 1995 Apr;177(8):2157–2163. doi: 10.1128/jb.177.8.2157-2163.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  39. Sun J. H., Arp D. J. Aerobically purified hydrogenase from Azotobacter vinelandii: activity, activation, and spectral properties. Arch Biochem Biophys. 1991 Jun;287(2):225–233. doi: 10.1016/0003-9861(91)90411-b. [DOI] [PubMed] [Google Scholar]
  40. Uffen R. L., Colbeau A., Richaud P., Vignais P. M. Cloning and sequencing the genes encoding uptake-hydrogenase subunits of Rhodocyclus gelatinosus. Mol Gen Genet. 1990 Mar;221(1):49–58. doi: 10.1007/BF00280367. [DOI] [PubMed] [Google Scholar]
  41. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 1995 Feb 16;373(6515):580–587. doi: 10.1038/373580a0. [DOI] [PubMed] [Google Scholar]
  42. Voordouw G., Menon N. K., LeGall J., Choi E. S., Peck H. D., Jr, Przybyla A. E. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol. 1989 May;171(5):2894–2899. doi: 10.1128/jb.171.5.2894-2899.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wu L. F., Mandrand M. A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x. [DOI] [PubMed] [Google Scholar]
  44. Xu X., Matsuno-Yagi A., Yagi T. Gene cluster of the energy-transducing NADH-quinone oxidoreductase of Paracoccus denitrificans: characterization of four structural gene products. Biochemistry. 1992 Aug 4;31(30):6925–6932. doi: 10.1021/bi00145a009. [DOI] [PubMed] [Google Scholar]
  45. Yagi T. The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta. 1993 Feb 8;1141(1):1–17. doi: 10.1016/0005-2728(93)90182-f. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES