Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Mar;178(6):1756–1761. doi: 10.1128/jb.178.6.1756-1761.1996

Ethanol transport in Zymomonas mobilis measured by using in vivo nuclear magnetic resonance spin transfer.

S M Schoberth 1, B E Chapman 1, P W Kuchel 1, R M Wittig 1, J Grotendorst 1, P Jansen 1, A A DeGraff 1
PMCID: PMC177863  PMID: 8626306

Abstract

For the first time, unidirectional rate constants of ethanol diffusion through the lipid membrane of a microorganism, the bacterium Zymomonas mobilis, were determined, thus replacing indirect inferences with direct kinetic data. The rate constants k1 (in to out) were 6.8 +/- 0.4s(-1) at 29 degrees C and 2.7 +/- 0.3s(-1) at 20 degrees C. They were determined by using 1H selective nuclear magnetic resonance spin magnetization transfer. The measurements were done on l-ml cell suspensions. No addition of radiotracers, withdrawing of aliquots, physical separation methods, or chemical manipulations were required. Until now, the rate constants of ethanol transport in microorganisms have been unknown because ethanol diffuses through the cytoplasmic membrane too quickly for radiolabel approaches. Net velocities of ethanol exchange were calculated from unidirectional rate constants and cytoplasmic volume, which was also determined with the same nuclear magnetic resonance experiments. The results (i) confirmed that ethanol would not be rate limiting during the conversion of glucose by Z. mobilis and (ii) indicated that ethanol can serve as an in vivo marker of cytoplasmic volume changes. This was verified by monitoring for the first time the changes of both cytoplasmic volume and extracytoplasmic and cytoplasmic concentrations of alpha and beta anomers of D-glucose in cell suspensions of a microorganism. These findings may open up new possibilities for kinetic studies of ethanol and sugar transport in Z. mobilis and other organisms.

Full Text

The Full Text of this article is available as a PDF (252.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belaich J. P., Senez J. C., Murgier M. Microcalorimetric study of glucose permeation in microbial cells. J Bacteriol. 1968 May;95(5):1750–1757. doi: 10.1128/jb.95.5.1750-1757.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dimarco A. A., Romano A. H. d-Glucose Transport System of Zymomonas mobilis. Appl Environ Microbiol. 1985 Jan;49(1):151–157. doi: 10.1128/aem.49.1.151-157.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dombek K. M., Ingram L. O. Determination of the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol. 1986 Jan;51(1):197–200. doi: 10.1128/aem.51.1.197-200.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guijarro J. M., Lagunas R. Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J Bacteriol. 1984 Dec;160(3):874–878. doi: 10.1128/jb.160.3.874-878.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hockings P. D., Rogers P. J. 1H NMR determination of intracellular volume in cell suspensions. Arch Biochem Biophys. 1994 Jun;311(2):383–388. doi: 10.1006/abbi.1994.1252. [DOI] [PubMed] [Google Scholar]
  6. Jones R. P. Intracellular ethanol--accumulation and exit from yeast and other cells. FEMS Microbiol Rev. 1988 Sep;4(3):239–258. doi: 10.1111/j.1574-6968.1988.tb02745.x. [DOI] [PubMed] [Google Scholar]
  7. Kirk K., Kuchel P. W. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds. Biochemistry. 1988 Nov 29;27(24):8803–8810. doi: 10.1021/bi00424a017. [DOI] [PubMed] [Google Scholar]
  8. Kirk K. NMR methods for measuring membrane transport rates. NMR Biomed. 1990 Feb;3(1):1–16. doi: 10.1002/nbm.1940030102. [DOI] [PubMed] [Google Scholar]
  9. Kuchel P. W. Spin-exchange NMR spectroscopy in studies of the kinetics of enzymes and membrane transport. NMR Biomed. 1990 Jun;3(3):102–119. doi: 10.1002/nbm.1940030303. [DOI] [PubMed] [Google Scholar]
  10. Raftos J. E., Bulliman B. T., Kuchel P. W. Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data. J Gen Physiol. 1990 Jun;95(6):1183–1204. doi: 10.1085/jgp.95.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robinson G., Chapman B. E., Kuchel P. W. 31P NMR spin-transfer in the phosphoglyceromutase reaction. Eur J Biochem. 1984 Sep 17;143(3):643–649. doi: 10.1111/j.1432-1033.1984.tb08417.x. [DOI] [PubMed] [Google Scholar]
  12. Ruhrmann J., Krämer R. Mechanism of glutamate uptake in Zymomonas mobilis. J Bacteriol. 1992 Dec;174(23):7579–7584. doi: 10.1128/jb.174.23.7579-7584.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schoberth S. M., de Graaf A. A. Use of in vivo 13C nuclear magnetic resonance spectroscopy to follow sugar uptake in Zymomonas mobilis. Anal Biochem. 1993 Apr;210(1):123–128. doi: 10.1006/abio.1993.1161. [DOI] [PubMed] [Google Scholar]
  14. Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1977 Nov 10;252(21):7850–7861. [PubMed] [Google Scholar]
  15. Swings J., De Ley J. The biology of Zymomonas. Bacteriol Rev. 1977 Mar;41(1):1–46. doi: 10.1128/br.41.1.1-46.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weisser P., Krämer R., Sahm H., Sprenger G. A. Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol. 1995 Jun;177(11):3351–3354. doi: 10.1128/jb.177.11.3351-3354.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES