Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Mar;178(6):1774–1775. doi: 10.1128/jb.178.6.1774-1775.1996

Importance of the E-46-D-160 polypeptide segment of the non-penicillin-binding module for the folding of the low-affinity, multimodular class B penicillin-binding protein 5 of Enterococus hirae.

M E Mollerach 1, P Partoune 1, J Coyette 1, J M Ghuysen 1
PMCID: PMC177867  PMID: 8626310

Abstract

Compared with the other class B multimodular penicillin- binding proteins (PBPs), the low-affinity PBP5 responsible for penicillin resistance in Enterococcus hirae R40, has an extended non-penicillin-binding module because of the presence of an approximately 110-amino-acid E-46(-)D-160 insert downstream from the membrane anchor. Expression of pbp5 genes lacking various parts of the insert-encoding region gives rise to proteins that are inert in terms of penicillin binding, showing that during folding of the PBP, the insert plays a role in the acquisition of a correct penicillin-binding configuration by the G-364(-)Q-678 carboxy-terminal module.

Full Text

The Full Text of this article is available as a PDF (187.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyce J. M., Opal S. M., Potter-Bynoe G., LaForge R. G., Zervos M. J., Furtado G., Victor G., Medeiros A. A. Emergence and nosocomial transmission of ampicillin-resistant enterococci. Antimicrob Agents Chemother. 1992 May;36(5):1032–1039. doi: 10.1128/aac.36.5.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chenoweth C., Schaberg D. The epidemiology of enterococci. Eur J Clin Microbiol Infect Dis. 1990 Feb;9(2):80–89. doi: 10.1007/BF01963631. [DOI] [PubMed] [Google Scholar]
  3. Coyette J., Ghuysen J. M., Fontana R. Solubilization and isolation of the membrane-bound DD-carboxypeptidase of Streptococcus faecalis ATCC9790. Properties of the purified enzyme. Eur J Biochem. 1978 Jul 17;88(1):297–305. doi: 10.1111/j.1432-1033.1978.tb12450.x. [DOI] [PubMed] [Google Scholar]
  4. Fontana R., Cerini R., Longoni P., Grossato A., Canepari P. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol. 1983 Sep;155(3):1343–1350. doi: 10.1128/jb.155.3.1343-1350.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  6. Hackbarth C. J., Chambers H. F. Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob Agents Chemother. 1989 Jul;33(7):991–994. doi: 10.1128/aac.33.7.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Moellering R. C., Jr The enterococci: an enigma and a continuing therapeutic challenge. Eur J Clin Microbiol Infect Dis. 1990 Feb;9(2):73–74. doi: 10.1007/BF01963629. [DOI] [PubMed] [Google Scholar]
  8. Murray B. E. The life and times of the Enterococcus. Clin Microbiol Rev. 1990 Jan;3(1):46–65. doi: 10.1128/cmr.3.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Piras G., Raze D., el Kharroubi A., Hastir D., Englebert S., Coyette J., Ghuysen J. M. Cloning and sequencing of the low-affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein. J Bacteriol. 1993 May;175(10):2844–2852. doi: 10.1128/jb.175.10.2844-2852.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Piras G., el Kharroubi A., van Beeumen J., Coeme E., Coyette J., Ghuysen J. M. Characterization of an Enterococcus hirae penicillin-binding protein 3 with low penicillin affinity. J Bacteriol. 1990 Dec;172(12):6856–6862. doi: 10.1128/jb.172.12.6856-6862.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Song M. D., Wachi M., Doi M., Ishino F., Matsuhashi M. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 1987 Aug 31;221(1):167–171. doi: 10.1016/0014-5793(87)80373-3. [DOI] [PubMed] [Google Scholar]
  12. Swartz M. N. Hospital-acquired infections: diseases with increasingly limited therapies. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2420–2427. doi: 10.1073/pnas.91.7.2420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vanhove M., Raquet X., Frère J. M. Investigation of the folding pathway of the TEM-1 beta-lactamase. Proteins. 1995 Jun;22(2):110–118. doi: 10.1002/prot.340220204. [DOI] [PubMed] [Google Scholar]
  14. Wu C. Y., Alborn W. E., Jr, Flokowitsch J. E., Hoskins J., Unal S., Blaszczak L. C., Preston D. A., Skatrud P. L. Site-directed mutagenesis of the mecA gene from a methicillin-resistant strain of Staphylococcus aureus. J Bacteriol. 1994 Jan;176(2):443–449. doi: 10.1128/jb.176.2.443-449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. el Kharroubi A., Jacques P., Piras G., Van Beeumen J., Coyette J., Ghuysen J. M. The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem J. 1991 Dec 1;280(Pt 2):463–469. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES