Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(7):1788–1792. doi: 10.1128/jb.178.7.1788-1792.1996

Separation of abnormal cell wall composition from penicillin resistance through genetic transformation of Streptococcus pneumoniae.

A Severin 1, A M Figueiredo 1, A Tomasz 1
PMCID: PMC177870  PMID: 8606149

Abstract

Compared with most penicillin-susceptible isolates of Streptococcus pneumoniae, penicillin-resistant clinical isolate Hun 663 contains mosaic penicillin-binding protein (PBP) genes encoding PBPs with reduced penicillin affinities, anomalous molecular sizes, and also cell walls of unusual chemical composition. Chromosomal DNA prepared from Hun 663 was used to transform susceptible recipient cells to donor level penicillin resistance, and a resistant transformant was used next as the source of DNA in the construction of a second round of penicillin-resistant transformants. The greatly reduced penicillin affinity of the high-molecular-weight PBPs was retained in all transformants through both genetic crosses. On the other hand, PBP pattern and abnormal cell wall composition, both of which are stable, clone-specific properties of strain Hun 663, were changed: individual transformants showed a variety of new, abnormal PBP patterns. Furthermore, while the composition of cell walls resembled that of the DNA donor in the first-round transformants, it became virtually identical to that of susceptible pneumococci in the second-round transformants. The findings indicate that genetic elements encoding the low affinity of PBPs and the penicillin resistance of the bacteria are separable from determinants that are responsible for the abnormal cell wall composition that often accompanies penicillin resistance in clinical strains of pneumococci.

Full Text

The Full Text of this article is available as a PDF (254.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coffey T. J., Dowson C. G., Daniels M., Spratt B. G. Genetics and molecular biology of beta-lactam-resistant pneumococci. Microb Drug Resist. 1995 Spring;1(1):29–34. doi: 10.1089/mdr.1995.1.29. [DOI] [PubMed] [Google Scholar]
  2. Garcia-Bustos J. F., Chait B. T., Tomasz A. Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem. 1987 Nov 15;262(32):15400–15405. [PubMed] [Google Scholar]
  3. Garcia-Bustos J., Tomasz A. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5415–5419. doi: 10.1073/pnas.87.14.5415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. García E., García J. L., Ronda C., García P., López R. Cloning and expression of the pneumococcal autolysin gene in Escherichia coli. Mol Gen Genet. 1985;201(2):225–230. doi: 10.1007/BF00425663. [DOI] [PubMed] [Google Scholar]
  5. Hakenbeck R., Tarpay M., Tomasz A. Multiple changes of penicillin-binding proteins in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Mar;17(3):364–371. doi: 10.1128/aac.17.3.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Handwerger S., Tomasz A. Alterations in penicillin-binding proteins of clinical and laboratory isolates of pathogenic Streptococcus pneumoniae with low levels of penicillin resistance. J Infect Dis. 1986 Jan;153(1):83–89. doi: 10.1093/infdis/153.1.83. [DOI] [PubMed] [Google Scholar]
  7. Jabes D., Nachman S., Tomasz A. Penicillin-binding protein families: evidence for the clonal nature of penicillin resistance in clinical isolates of pneumococci. J Infect Dis. 1989 Jan;159(1):16–25. doi: 10.1093/infdis/159.1.16. [DOI] [PubMed] [Google Scholar]
  8. LACKS S., HOTCHKISS R. D. A study of the genetic material determining an enzyme in Pneumococcus. Biochim Biophys Acta. 1960 Apr 22;39:508–518. doi: 10.1016/0006-3002(60)90205-5. [DOI] [PubMed] [Google Scholar]
  9. Laible G., Hakenbeck R. Five independent combinations of mutations can result in low-affinity penicillin-binding protein 2x of Streptococcus pneumoniae. J Bacteriol. 1991 Nov;173(21):6986–6990. doi: 10.1128/jb.173.21.6986-6990.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Munoz R., Musser J. M., Crain M., Briles D. E., Marton A., Parkinson A. J., Sorensen U., Tomasz A. Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis. Clin Infect Dis. 1992 Jul;15(1):112–118. doi: 10.1093/clinids/15.1.112. [DOI] [PubMed] [Google Scholar]
  11. Severin A., Tomasz A. Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J Bacteriol. 1996 Jan;178(1):168–174. doi: 10.1128/jb.178.1.168-174.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Severin A., Vaz Pato M. V., Sá Figueiredo A. M., Tomasz A. Drastic changes in the peptidoglycan composition of penicillin resistant laboratory mutants of Streptococcus pneumoniae. FEMS Microbiol Lett. 1995 Jul 15;130(1):31–35. doi: 10.1111/j.1574-6968.1995.tb07694.x. [DOI] [PubMed] [Google Scholar]
  13. Williamson R., Hakenbeck R., Tomasz A. In vivo interaction of beta-lactam antibiotics with the penicillin-binding proteins of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Oct;18(4):629–637. doi: 10.1128/aac.18.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zighelboim S., Tomasz A. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Mar;17(3):434–442. doi: 10.1128/aac.17.3.434. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES