Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(7):1809–1812. doi: 10.1128/jb.178.7.1809-1812.1996

The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage.

M A Navas 1, J M Gancedo 1
PMCID: PMC177873  PMID: 8606152

Abstract

The question of how the loss of regulatory mechanisms for a metabolic enzyme would affect the fitness of the corresponding organism has been addressed. For this, the fructose-1,6-bisphosphatase (FbPase) from Saccharomyces cerevisiae has been taken as a model. Yeast strains in which different controls on FbPase (catabolite repression and inactivation; inhibition by fructose-2,6-bisphosphate and AMP) have been removed have been constructed. These strains express during growth on glucose either the native yeast FbPase, the Escherichia coli FbPase which is insensitive to inhibition by fructose-2,6-bisphosphate, or a mutated E. coli FbPase with low sensitivity to AMP. Expression of the heterologous FbPases increases the fermentation rate of the yeast and its generation time, while it decreases its growth yield. In the strain containing high levels of an unregulated bacterial FbPase, cycling between fructose-6-phosphate and fructose-1,6-bisphosphate reaches 14%. It is shown that the regulatory mechanisms of FbPase provide a slight but definite competitive advantage during growth in mixed cultures.

Full Text

The Full Text of this article is available as a PDF (181.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammerer G. Expression of genes in yeast using the ADCI promoter. Methods Enzymol. 1983;101:192–201. doi: 10.1016/0076-6879(83)01014-9. [DOI] [PubMed] [Google Scholar]
  2. Babul J., Guixé V. Fructose bisphosphatase from Escherichia coli. Purification and characterization. Arch Biochem Biophys. 1983 Sep;225(2):944–949. doi: 10.1016/0003-9861(83)90109-1. [DOI] [PubMed] [Google Scholar]
  3. Bañuelos M., Fraenkel D. G. Saccharomyces carlsbergensis fdp mutant and futile cycling of fructose 6-phosphate. Mol Cell Biol. 1982 Aug;2(8):921–929. doi: 10.1128/mcb.2.8.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erhart E., Hollenberg C. P. The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol. 1983 Nov;156(2):625–635. doi: 10.1128/jb.156.2.625-635.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Estévez A. M., Heinisch J. J., Aragón J. J. Functional complementation of yeast phosphofructokinase mutants by the non-allosteric enzyme from Dictyostelium discoideum. FEBS Lett. 1995 Oct 23;374(1):100–104. doi: 10.1016/0014-5793(95)01085-s. [DOI] [PubMed] [Google Scholar]
  6. Fraenkel D. G., Pontremoli S., Horecker B. L. The specific fructose diphosphatase of Escherichia coli: properties and partial purification. Arch Biochem Biophys. 1966 Apr;114(1):4–12. doi: 10.1016/0003-9861(66)90298-0. [DOI] [PubMed] [Google Scholar]
  7. Funayama S., Gancedo J. M., Gancedo C. Turnover of yeast fructose-bisphosphatase in different metabolic conditions. Eur J Biochem. 1980 Aug;109(1):61–66. doi: 10.1111/j.1432-1033.1980.tb04767.x. [DOI] [PubMed] [Google Scholar]
  8. GANCEDO C., SALAS M. L., GINER A., SOLS A. RECIPROCAL EFFECTS OF CARBON SOURCES ON THE LEVELS OF AN AMP-SENSITIVE FRUCTOSE-1,6-DIPHOSPHATASE AND PHOSPHOFRUCTOKINASE IN YEAST. Biochem Biophys Res Commun. 1965 Jun 18;20:15–20. doi: 10.1016/0006-291x(65)90944-7. [DOI] [PubMed] [Google Scholar]
  9. Gamo F. J., Navas M. A., Blazquez M. A., Gancedo C., Gancedo J. M. Catabolite inactivation of heterologous fructose-1,6-bisphosphatases and fructose-1,6-bisphosphatase-beta-galactosidase fusion proteins in Saccharomyces cerevisiae. Eur J Biochem. 1994 Jun 15;222(3):879–884. doi: 10.1111/j.1432-1033.1994.tb18935.x. [DOI] [PubMed] [Google Scholar]
  10. Gancedo J. M., Mazón M. J., Gancedo C. Kinetic differences between two interconvertible forms of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. Arch Biochem Biophys. 1982 Oct 15;218(2):478–482. doi: 10.1016/0003-9861(82)90370-8. [DOI] [PubMed] [Google Scholar]
  11. Hinnen A., Meyhack B., Heim J. Heterologous gene expression in yeast. Biotechnology. 1989;13:193–213. [PubMed] [Google Scholar]
  12. Navas M. A., Cerdán S., Gancedo J. M. Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1290–1294. doi: 10.1073/pnas.90.4.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  14. Sedivy J. M., Babul J., Fraenkel D. G. AMP-insensitive fructose bisphosphatase in Escherichia coli and its consequences. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1656–1659. doi: 10.1073/pnas.83.6.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sedivy J. M., Daldal F., Fraenkel D. G. Fructose bisphosphatase of Escherichia coli: cloning of the structural gene (fbp) and preparation of a chromosomal deletion. J Bacteriol. 1984 Jun;158(3):1048–1053. doi: 10.1128/jb.158.3.1048-1053.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES