Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(7):1881–1894. doi: 10.1128/jb.178.7.1881-1894.1996

Evolutionary conservation of RecA genes in relation to protein structure and function.

S Karlin 1, L Brocchieri 1
PMCID: PMC177882  PMID: 8606161

Abstract

Functional and structural regions inferred from the Escherichia coli R ecA protein crystal structure and mutation studies are evaluated in terms of evolutionary conservation across 63 RecA eubacterial sequences. Two paramount segments invariant in specific amino acids correspond to the ATP-binding A site and the functionally unassigned segment from residues 145 to 149 immediately carboxyl to the ATP hydrolysis B site. Not only are residues 145 to 149 conserved individually, but also all three-dimensional structural neighbors of these residues are invariant, strongly attesting to the functional or structural importance of this segment. The conservation of charged residues at the monomer-monomer interface, emphasizing basic residues on one surface and acidic residues on the other, suggests that RecA monomer polymerization is substantially mediated by electrostatic interactions. Different patterns of conservation also allow determination of regions proposed to interact with DNA, of LexA binding sites, and of filament-filament contact regions. Amino acid conservation is also compared with activities and properties of certain RecA protein mutants. Arginine 243 and its strongly cationic structural environment are proposed as the major site of competition for DNA and LexA binding to RecA. The conserved acidic and glycine residues of the disordered loop L1 and its proximity to the RecA acidic monomer interface suggest its involvement in monomer-monomer interactions rather than DNA binding. The conservation of various RecA positions and regions suggests a model for RecA-double-stranded DNA interaction and other functional and structural assignments.

Full Text

The Full Text of this article is available as a PDF (674.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F. A protein alignment scoring system sensitive at all evolutionary distances. J Mol Evol. 1993 Mar;36(3):290–300. doi: 10.1007/BF00160485. [DOI] [PubMed] [Google Scholar]
  2. Benedict R. C., Kowalczykowski S. C. Increase of the DNA strand assimilation activity of recA protein by removal of the C terminus and structure-function studies of the resulting protein fragment. J Biol Chem. 1988 Oct 25;263(30):15513–15520. [PubMed] [Google Scholar]
  3. Blaisdell B. E., Rudd K. E., Matin A., Karlin S. Significant dispersed recurrent DNA sequences in the Escherichia coli genome. Several new groups. J Mol Biol. 1993 Feb 20;229(4):833–848. doi: 10.1006/jmbi.1993.1090. [DOI] [PubMed] [Google Scholar]
  4. Brocchieri L., Karlin S. How are close residues of protein structures distributed in primary sequence? Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12136–12140. doi: 10.1073/pnas.92.26.12136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
  7. Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
  8. Clark A. J., Sandler S. J. Homologous genetic recombination: the pieces begin to fall into place. Crit Rev Microbiol. 1994;20(2):125–142. doi: 10.3109/10408419409113552. [DOI] [PubMed] [Google Scholar]
  9. DiCapua E., Cuillel M., Hewat E., Schnarr M., Timmins P. A., Ruigrok R. W. Activation of recA protein. The open helix model for LexA cleavage. J Mol Biol. 1992 Aug 5;226(3):707–719. doi: 10.1016/0022-2836(92)90627-v. [DOI] [PubMed] [Google Scholar]
  10. Dutreix M., Moreau P. L., Bailone A., Galibert F., Battista J. R., Walker G. C., Devoret R. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol. 1989 May;171(5):2415–2423. doi: 10.1128/jb.171.5.2415-2423.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freitag N., McEntee K. Affinity chromatography of RecA protein and RecA nucleoprotein complexes on RecA protein-agarose columns. J Biol Chem. 1988 Dec 25;263(36):19525–19534. [PubMed] [Google Scholar]
  12. Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horii T., Ozawa N., Ogawa T., Ogawa H. Inhibitory effects of N- and C-terminal truncated Escherichia coli recA gene products on functions of the wild-type recA gene. J Mol Biol. 1992 Jan 5;223(1):105–114. doi: 10.1016/0022-2836(92)90719-z. [DOI] [PubMed] [Google Scholar]
  14. Johnson M. S., Overington J. P. A structural basis for sequence comparisons. An evaluation of scoring methodologies. J Mol Biol. 1993 Oct 20;233(4):716–738. doi: 10.1006/jmbi.1993.1548. [DOI] [PubMed] [Google Scholar]
  15. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  16. Karlin S., Brendel V., Bucher P. Significant similarity and dissimilarity in homologous proteins. Mol Biol Evol. 1992 Jan;9(1):152–167. doi: 10.1093/oxfordjournals.molbev.a040704. [DOI] [PubMed] [Google Scholar]
  17. Karlin S., Weinstock G. M., Brendel V. Bacterial classifications derived from recA protein sequence comparisons. J Bacteriol. 1995 Dec;177(23):6881–6893. doi: 10.1128/jb.177.23.6881-6893.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karlin S., Zuker M., Brocchieri L. Measuring residue associations in protein structures. Possible implications for protein folding. J Mol Biol. 1994 Jun 3;239(2):227–248. doi: 10.1006/jmbi.1994.1365. [DOI] [PubMed] [Google Scholar]
  19. Kawashima H., Horii T., Ogawa T., Ogawa H. Functional domains of Escherichia coli recA protein deduced from the mutational sites in the gene. Mol Gen Genet. 1984;193(2):288–292. doi: 10.1007/BF00330682. [DOI] [PubMed] [Google Scholar]
  20. Konola J. T., Logan K. M., Knight K. L. Functional characterization of residues in the P-loop motif of the RecA protein ATP binding site. J Mol Biol. 1994 Mar 18;237(1):20–34. doi: 10.1006/jmbi.1994.1206. [DOI] [PubMed] [Google Scholar]
  21. Konola J. T., Nastri H. G., Logan K. M., Knight K. L. Mutations at Pro67 in the RecA protein P-loop motif differentially modify coprotease function and separate coprotease from recombination activities. J Biol Chem. 1995 Apr 14;270(15):8411–8419. doi: 10.1074/jbc.270.15.8411. [DOI] [PubMed] [Google Scholar]
  22. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kowalczykowski S. C., Eggleston A. K. Homologous pairing and DNA strand-exchange proteins. Annu Rev Biochem. 1994;63:991–1043. doi: 10.1146/annurev.bi.63.070194.005015. [DOI] [PubMed] [Google Scholar]
  24. Liu S. K., Eisen J. A., Hanawalt P. C., Tessman I. recA mutations that reduce the constitutive coprotease activity of the RecA1202(Prtc) protein: possible involvement of interfilament association in proteolytic and recombination activities. J Bacteriol. 1993 Oct;175(20):6518–6529. doi: 10.1128/jb.175.20.6518-6529.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Logan K. M., Knight K. L. Mutagenesis of the P-loop motif in the ATP binding site of the RecA protein from Escherichia coli. J Mol Biol. 1993 Aug 20;232(4):1048–1059. doi: 10.1006/jmbi.1993.1459. [DOI] [PubMed] [Google Scholar]
  26. Morimatsu K., Horii T. Analysis of the DNA binding site of Escherichia coli RecA protein. Adv Biophys. 1995;31:23–48. doi: 10.1016/0065-227x(95)99381-x. [DOI] [PubMed] [Google Scholar]
  27. Nastri H. G., Knight K. L. Identification of residues in the L1 region of the RecA protein which are important to recombination or coprotease activities. J Biol Chem. 1994 Oct 21;269(42):26311–26322. [PubMed] [Google Scholar]
  28. Nguyen T. T., Muench K. A., Bryant F. R. Inactivation of the recA protein by mutation of histidine 97 or lysine 248 at the subunit interface. J Biol Chem. 1993 Feb 15;268(5):3107–3113. [PubMed] [Google Scholar]
  29. Norioka N., Hsu M. Y., Inouye S., Inouye M. Two recA genes in Myxococcus xanthus. J Bacteriol. 1995 Jul;177(14):4179–4182. doi: 10.1128/jb.177.14.4179-4182.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
  31. Roca A. I., Cox M. M. The RecA protein: structure and function. Crit Rev Biochem Mol Biol. 1990;25(6):415–456. doi: 10.3109/10409239009090617. [DOI] [PubMed] [Google Scholar]
  32. Skiba M. C., Knight K. L. Functionally important residues at a subunit interface site in the RecA protein from Escherichia coli. J Biol Chem. 1994 Feb 4;269(5):3823–3828. [PubMed] [Google Scholar]
  33. Story R. M., Steitz T. A. Structure of the recA protein-ADP complex. Nature. 1992 Jan 23;355(6358):374–376. doi: 10.1038/355374a0. [DOI] [PubMed] [Google Scholar]
  34. Story R. M., Weber I. T., Steitz T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. doi: 10.1038/355318a0. [DOI] [PubMed] [Google Scholar]
  35. Takahashi M., Schnarr M. Investigation of RecA--polynucleotide interactions from the measurement of LexA repressor cleavage kinetics. Presence of different types of complex. Eur J Biochem. 1989 Aug 15;183(3):617–622. doi: 10.1111/j.1432-1033.1989.tb21091.x. [DOI] [PubMed] [Google Scholar]
  36. Tateishi S., Horii T., Ogawa T., Ogawa H. C-terminal truncated Escherichia coli RecA protein RecA5327 has enhanced binding affinities to single- and double-stranded DNAs. J Mol Biol. 1992 Jan 5;223(1):115–129. doi: 10.1016/0022-2836(92)90720-5. [DOI] [PubMed] [Google Scholar]
  37. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang W. B., Tessman E. S. Location of functional regions of the Escherichia coli RecA protein by DNA sequence analysis of RecA protease-constitutive mutants. J Bacteriol. 1986 Nov;168(2):901–910. doi: 10.1128/jb.168.2.901-910.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weisemann J. M., Weinstock G. M. Mutations at the cysteine codons of the recA gene of Escherichia coli. DNA. 1988 Jul-Aug;7(6):389–398. doi: 10.1089/dna.1.1988.7.389. [DOI] [PubMed] [Google Scholar]
  40. Wells J. A. Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 1991;202:390–411. doi: 10.1016/0076-6879(91)02020-a. [DOI] [PubMed] [Google Scholar]
  41. Yu X., Egelman E. H. The LexA repressor binds within the deep helical groove of the activated RecA filament. J Mol Biol. 1993 May 5;231(1):29–40. doi: 10.1006/jmbi.1993.1254. [DOI] [PubMed] [Google Scholar]
  42. Zaitsev E., Alexseyev A., Lanzov V., Satin L., Clark A. J. Nucleotide sequence between recA and alaSp in E. coli K12 and the sequence change in four recA mutations. Mutat Res. 1994 Apr;323(4):173–177. doi: 10.1016/0165-7992(94)90030-2. [DOI] [PubMed] [Google Scholar]
  43. Zlotnick A., Brenner S. L. An alpha-helical peptide model for electrostatic interactions of proteins with DNA. The N terminus of RecA. J Mol Biol. 1989 Oct 5;209(3):447–457. doi: 10.1016/0022-2836(89)90009-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES