Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(7):1946–1954. doi: 10.1128/jb.178.7.1946-1954.1996

The Rhodobacter sphaeroides 2.4.1 rho gene: expression and genetic analysis of structure and function.

M Gomelsky 1, S Kaplan 1
PMCID: PMC177890  PMID: 8606169

Abstract

The gene which encodes transcription termination factor Rho from Rhodobacter sphaeroides 2.4.1, the gram-negative facultative photosynthetic bacterium, has been cloned and sequenced. The deduced protein shows a high level of sequence similarity to other bacterial Rho factors, especially those from proteobacteria. However, several amino acid substitutions in the conserved ATP-binding site have been identified. When expressed in Escherichia coli, the R. sphaeroides rho gene relieves Rho-dependent polarity of the trp operon, indicating interference with the transcription termination machinery of E. coli. A truncated version of R. sphaeroides Rho (Rho') is toxic to a bacterium related to R. sphaeroides, Paracoccus denitrificans, and is lethal to R. sphaeroides. We suggest that toxicity is due to the ability of Rho' to form inactive heteromers with the chromosomally encoded intact Rho. We localized a minimal amino acid sequence within Rho which appears to be critical for its toxic effect and which we believe may be involved in protein-protein interactions. This region was previously reported to be highly conserved and unique among various Rho proteins. The lethality of rho' in R. sphaeroides together with our inability to obtain a null mutation in rho suggests that Rho-dependent transcription termination is essential in R. sphaeroides. This is analogous to what is observed for gram-negative E. coli and contrasts with what is observed for gram-positive Bacillus subtilis. The genetic region surrounding the R. sphaeroides rho gene has been determined and found to be different compared with those of other bacterial species. rho is preceded by orf1, which encodes a putative integral membrane protein possibly involved in cytochrome formation or functioning. The gene downstream of rho is homologous to thdF, whose product is involved in thiophene and furan oxidation.

Full Text

The Full Text of this article is available as a PDF (551.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam K. Y., Clark D. P. Molecular cloning and sequence of the thdF gene, which is involved in thiophene and furan oxidation by Escherichia coli. J Bacteriol. 1991 Oct;173(19):6018–6024. doi: 10.1128/jb.173.19.6018-6024.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen L. N., Hanson R. S. Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol. 1985 Mar;161(3):955–962. doi: 10.1128/jb.161.3.955-962.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong G. A., Alberti M., Leach F., Hearst J. E. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet. 1989 Apr;216(2-3):254–268. doi: 10.1007/BF00334364. [DOI] [PubMed] [Google Scholar]
  4. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  5. Das A., Court D., Adhya S. Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1959–1963. doi: 10.1073/pnas.73.6.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis J., Donohue T. J., Kaplan S. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. J Bacteriol. 1988 Jan;170(1):320–329. doi: 10.1128/jb.170.1.320-329.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dolan J. W., Marshall N. F., Richardson J. P. Transcription termination factor rho has three distinct structural domains. J Biol Chem. 1990 Apr 5;265(10):5747–5754. [PubMed] [Google Scholar]
  8. Dombroski A. J., Brennan C. A., Spear P., Platt T. Site-directed alterations in the ATP-binding domain of rho protein affect its activities as a termination factor. J Biol Chem. 1988 Dec 15;263(35):18802–18809. [PubMed] [Google Scholar]
  9. Dombroski A. J., LaDine J. R., Cross R. L., Platt T. The ATP binding site on rho protein. Affinity labeling of Lys181 by pyridoxal 5'-diphospho-5'-adenosine. J Biol Chem. 1988 Dec 15;263(35):18810–18815. [PubMed] [Google Scholar]
  10. Dombroski A. J., Platt T. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2538–2542. doi: 10.1073/pnas.85.8.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dryden S. C., Kaplan S. Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res. 1990 Dec 25;18(24):7267–7277. doi: 10.1093/nar/18.24.7267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duncan T. M., Cross R. L. A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure. J Bioenerg Biomembr. 1992 Oct;24(5):453–461. doi: 10.1007/BF00762362. [DOI] [PubMed] [Google Scholar]
  13. Eraso J. M., Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol. 1995 May;177(10):2695–2706. doi: 10.1128/jb.177.10.2695-2706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eraso J. M., Kaplan S. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol. 1994 Jan;176(1):32–43. doi: 10.1128/jb.176.1.32-43.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Finger L. R., Richardson J. P. Stabilization of the hexameric form of Escherichia coli protein rho under ATP hydrolysis conditions. J Mol Biol. 1982 Mar 25;156(1):203–219. doi: 10.1016/0022-2836(82)90467-3. [DOI] [PubMed] [Google Scholar]
  16. Gomelsky M., Kaplan S. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol. 1995 Mar;177(6):1634–1637. doi: 10.1128/jb.177.6.1634-1637.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gomelsky M., Kaplan S. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase. Microbiology. 1995 Aug;141(Pt 8):1805–1819. doi: 10.1099/13500872-141-8-1805. [DOI] [PubMed] [Google Scholar]
  18. Gong L., Lee J. K., Kaplan S. The Q gene of Rhodobacter sphaeroides: its role in puf operon expression and spectral complex assembly. J Bacteriol. 1994 May;176(10):2946–2961. doi: 10.1128/jb.176.10.2946-2961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jackson E. N., Yanofsky C. Internal deletions in the tryptophan operon of Escherichia coli. J Mol Biol. 1972 Nov 14;71(2):149–161. doi: 10.1016/0022-2836(72)90343-9. [DOI] [PubMed] [Google Scholar]
  20. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  21. Kiley P. J., Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiol Rev. 1988 Mar;52(1):50–69. doi: 10.1128/mr.52.1.50-69.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ma D., Cook D. N., O'Brien D. A., Hearst J. E. Analysis of the promoter and regulatory sequences of an oxygen-regulated bch operon in Rhodobacter capsulatus by site-directed mutagenesis. J Bacteriol. 1993 Apr;175(7):2037–2045. doi: 10.1128/jb.175.7.2037-2045.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Miloso M., Limauro D., Alifano P., Rivellini F., Lavitola A., Gulletta E., Bruni C. B. Characterization of the rho genes of Neisseria gonorrhoeae and Salmonella typhimurium. J Bacteriol. 1993 Dec;175(24):8030–8037. doi: 10.1128/jb.175.24.8030-8037.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Modrak D., Richardson J. P. The RNA-binding domain of transcription termination factor rho: isolation, characterization, and determination of sequence limits. Biochemistry. 1994 Jul 12;33(27):8292–8299. doi: 10.1021/bi00193a016. [DOI] [PubMed] [Google Scholar]
  25. Nehrke K. W., Seifried S. E., Platt T. Overproduced rho factor from p39AS has lysine replacing glutamic acid at residue 155 in the linker region between its RNA and ATP binding domains. Nucleic Acids Res. 1992 Nov 25;20(22):6107–6107. doi: 10.1093/nar/20.22.6107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O I., Stitt B. L. 8-Azido-ATP inactivation of Escherichia coli transcription termination factor Rho. Modification of one subunit inactivates the hexamer. J Biol Chem. 1994 Feb 18;269(7):5009–5015. [PubMed] [Google Scholar]
  27. Opperman T., Martinez A., Richardson J. P. The ts15 mutation of Escherichia coli alters the sequence of the C-terminal nine residues of Rho protein. Gene. 1995 Jan 11;152(1):133–134. doi: 10.1016/0378-1119(94)00664-e. [DOI] [PubMed] [Google Scholar]
  28. Opperman T., Richardson J. P. Phylogenetic analysis of sequences from diverse bacteria with homology to the Escherichia coli rho gene. J Bacteriol. 1994 Aug;176(16):5033–5043. doi: 10.1128/jb.176.16.5033-5043.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Penfold R. J., Pemberton J. M. Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol. 1994 May;176(10):2869–2876. doi: 10.1128/jb.176.10.2869-2876.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pinkham J. L., Platt T. The nucleotide sequence of the rho gene of E. coli K-12. Nucleic Acids Res. 1983 Jun 11;11(11):3531–3545. doi: 10.1093/nar/11.11.3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Platt T. Rho and RNA: models for recognition and response. Mol Microbiol. 1994 Mar;11(6):983–990. doi: 10.1111/j.1365-2958.1994.tb00376.x. [DOI] [PubMed] [Google Scholar]
  32. Quirk P. G., Dunkley E. A., Jr, Lee P., Krulwich T. A. Identification of a putative Bacillus subtilis rho gene. J Bacteriol. 1993 Feb;175(3):647–654. doi: 10.1128/jb.175.3.647-654.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Richardson J. P. Transcription termination. Crit Rev Biochem Mol Biol. 1993;28(1):1–30. doi: 10.3109/10409239309082571. [DOI] [PubMed] [Google Scholar]
  34. Richardson L. V., Richardson J. P. A vector for controlled, high-yield production of specifically mutated proteins in Escherichia coli: test of a putative cytidine-binding domain in Rho factor and its Thr16----Ala mutant. Gene. 1992 Sep 1;118(1):103–107. doi: 10.1016/0378-1119(92)90255-n. [DOI] [PubMed] [Google Scholar]
  35. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  36. Tilly K., Campbell J. A Borrelia burgdorferi homolog of the Escherichia coli rho gene. Nucleic Acids Res. 1993 Feb 25;21(4):1040–1040. doi: 10.1093/nar/21.4.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  38. Yanofsky C., Horn V. Bicyclomycin sensitivity and resistance affect Rho factor-mediated transcription termination in the tna operon of Escherichia coli. J Bacteriol. 1995 Aug;177(15):4451–4456. doi: 10.1128/jb.177.15.4451-4456.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES