Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(7):1990–1995. doi: 10.1128/jb.178.7.1990-1995.1996

Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes.

G L Newton 1, K Arnold 1, M S Price 1, C Sherrill 1, S B Delcardayre 1, Y Aharonowitz 1, G Cohen 1, J Davies 1, R C Fahey 1, C Davis 1
PMCID: PMC177895  PMID: 8606174

Abstract

Mycothiol [2-(N-acetylcysteinyl)amido-2-deoxy-alpha-D-glucopyranosyl- (1-->1)-myo-inositol] (MSH) has recently been identified as a major thiol in a number of actinomycetes (S. Sakuda, Z.-Y. Zhou, and Y. Yamada, Biosci. Biotech. Biochem. 58:1347-1348, 1994; H. S. C. Spies and D. J. Steenkamp, Eur. J. Biochem. 224:203-213, 1994; and G. L. Newton, C. A. Bewley, T. J. Dwyer, R. Horn, Y. Aharonowitz, G. Cohen, J. Davies, D. J. Faulkner, and R. C. Fahey, Eur. J. Biochem. 230:821-825, 1995). Since this novel thiol is more resistant than glutathione to heavy-metal ion-catalyzed oxidation, it seems likely to be the antioxidant thiol used by aerobic gram-positive bacteria that do not produce glutathione (GSH). In the present study we sought to define the spectrum of organisms that produce MSH. GSH was absent in all actinomycetes and some of the other gram-positive bacteria studied. Surprisingly, the streptococci and enterococci contained GSH, and some strains appeared to synthesize it rather than import it from the growth medium. MSH was found at significant levels in most actinomycetes examined. Among the actinobacteria four Micrococcus species produced MSH, but MSH was not found in representatives of the Arthrobacter, Agromyces, or Actinomyces genera. Of the nocardioforms examined, Nocardia, Rhodococcus, and Mycobacteria spp. all produced MSH. In addition to the established production of MSH by streptomycetes, we found that Micromonospora, Actinomadura, and Nocardiopsis spp. also synthesized MSH. Mycothiol production was not detected in Propionibacterium acnes or in representative species of the Listeria, Staphylococcus, Streptococcus, Enterococcus, Bacillus, and Clostridium genera. Examination of representatives of the cyanobacteria, purple bacteria, and spirochetes also gave negative results, as did tests of rat liver, bonito, Candida albicans, Neurospora crassa, and spinach leaves. The results, which indicate that MSH production is restricted to the actinomycetes, could have significant implications for the detection and treatment of infections with actinomycetes, especially those caused by mycobacteria.

Full Text

The Full Text of this article is available as a PDF (249.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaman B. L., Beaman L. Nocardia species: host-parasite relationships. Clin Microbiol Rev. 1994 Apr;7(2):213–264. doi: 10.1128/cmr.7.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  3. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B. Occurrence of glutathione in bacteria. J Bacteriol. 1978 Mar;133(3):1126–1129. doi: 10.1128/jb.133.3.1126-1129.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fahey R. C., Buschbacher R. M., Newton G. L. The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol. 1987;25:81–88. doi: 10.1007/BF02100044. [DOI] [PubMed] [Google Scholar]
  5. Fahey R. C., Newton G. L. Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol. 1987;143:85–96. doi: 10.1016/0076-6879(87)43016-4. [DOI] [PubMed] [Google Scholar]
  6. Fahey R. C., Sundquist A. R. Evolution of glutathione metabolism. Adv Enzymol Relat Areas Mol Biol. 1991;64:1–53. doi: 10.1002/9780470123102.ch1. [DOI] [PubMed] [Google Scholar]
  7. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle. 1991 Mar;72(1):1–6. doi: 10.1016/0041-3879(91)90017-m. [DOI] [PubMed] [Google Scholar]
  8. Kumaresan K. R., Springhorn S. S., Lacks S. A. Lethal and mutagenic actions of N-methyl-N'-nitro-N-nitrosoguanidine potentiated by oxidized glutathione, a seemingly harmless substance in the cellular environment. J Bacteriol. 1995 Jul;177(13):3641–3646. doi: 10.1128/jb.177.13.3641-3646.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Little E., Bork P., Doolittle R. F. Tracing the spread of fibronectin type III domains in bacterial glycohydrolases. J Mol Evol. 1994 Dec;39(6):631–643. doi: 10.1007/BF00160409. [DOI] [PubMed] [Google Scholar]
  10. Mazodier P., Davies J. Gene transfer between distantly related bacteria. Annu Rev Genet. 1991;25:147–171. doi: 10.1146/annurev.ge.25.120191.001051. [DOI] [PubMed] [Google Scholar]
  11. Newton G. L., Bewley C. A., Dwyer T. J., Horn R., Aharonowitz Y., Cohen G., Davies J., Faulkner D. J., Fahey R. C. The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem. 1995 Jun 1;230(2):821–825. doi: 10.1111/j.1432-1033.1995.0821h.x. [DOI] [PubMed] [Google Scholar]
  12. Newton G. L., Fahey R. C., Cohen G., Aharonowitz Y. Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol. 1993 May;175(9):2734–2742. doi: 10.1128/jb.175.9.2734-2742.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Newton G. L., Fahey R. C. Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol. 1995;251:148–166. doi: 10.1016/0076-6879(95)51118-0. [DOI] [PubMed] [Google Scholar]
  14. Newton G. L., Fahey R. C. Purification of thiols from biological samples. Methods Enzymol. 1987;143:96–101. doi: 10.1016/0076-6879(87)43017-6. [DOI] [PubMed] [Google Scholar]
  15. Newton G. L., Javor B. gamma-Glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria. J Bacteriol. 1985 Jan;161(1):438–441. doi: 10.1128/jb.161.1.438-441.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pébay M., Holl A. C., Simonet J. M., Decaris B. Characterization of the gor gene of the lactic acid bacterium Streptococcus thermophilus CNRZ368. Res Microbiol. 1995 Jun;146(5):371–383. doi: 10.1016/0923-2508(96)80283-x. [DOI] [PubMed] [Google Scholar]
  18. Sakuda S., Zhou Z. Y., Yamada Y. Structure of a novel disulfide of 2-(N-acetylcysteinyl)amido-2-deoxy-alpha-D-glucopyranosyl-myo-inositol produced by Streptomyces sp. Biosci Biotechnol Biochem. 1994 Jul;58(7):1347–1348. doi: 10.1271/bbb.58.1347. [DOI] [PubMed] [Google Scholar]
  19. Smith J. M. Analyzing the mosaic structure of genes. J Mol Evol. 1992 Feb;34(2):126–129. doi: 10.1007/BF00182389. [DOI] [PubMed] [Google Scholar]
  20. Spies H. S., Steenkamp D. J. Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem. 1994 Aug 15;224(1):203–213. doi: 10.1111/j.1432-1033.1994.tb20013.x. [DOI] [PubMed] [Google Scholar]
  21. Sundquist A. R., Fahey R. C. Evolution of antioxidant mechanisms: thiol-dependent peroxidases and thioltransferase among procaryotes. J Mol Evol. 1989 Nov;29(5):429–435. doi: 10.1007/BF02602913. [DOI] [PubMed] [Google Scholar]
  22. Sundquist A. R., Fahey R. C. The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium. J Biol Chem. 1989 Jan 15;264(2):719–725. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES