Abstract
To search for functionally thermosensitive (FT) recA mutations, as well as mutations with differently affect RecA protein functions, seven new recA mutations in three different regions of the RecA protein structure proposed by Story et al. [R. M. Story, I. T. Weber, and T. A. Steitz, Nature (London) 355:318-325, 1992] were constructed. Additionally, the recA2283 allele responsible for the FT phenotype of the recA200 mutant was sequenced. Five single mutations (recA2277, recA2278, recA2283, recA2283E, and recA2284) and one double mutation (recA2278-5) generated, respectively, the amino acid substitutions L-277-->N, G-278-->P, L-283-->P, L-283-->E, I-284-->D, and G-278-->T plus V-275-->F in the alpha-helix H-beta-strand 9 region of the C-terminal domain of the RecA protein structure. According to recombination, repair, and SOS-inducible characteristics, these six mutations fall into four phenotypic classes: (i) an FT class, with either inhibition of all three analyzed functions at 42 degrees C (recA2283), preferable inhibition at 42 degrees C of recombination and the SOS response (recA2278), or inhibition at 42 degrees C of only recombination (recA2278-5); (ii) a moderately deficient class (recA2277); (iii) a nondeficient class (recA2283E); and (iv) a mutation with a null phenotype (recA2284). The recA2223 mutation generates an L-223-->M substitution in beta-strand 6 in a central domain of the RecA structure. This FT mutation shows preferable inhibition of the SOS response at 42 degrees C. The recA2183 mutation produces a K-183-->M substitution in alpha-helix F of the same domain. The Lys-183 position in the Escherichia coli RecA protein was found among positions which are important for interfilament interaction (R. M. Story, I. T. Weber, and T. A. Steitz, Nature (London) 355:318-325, 1992).
Full Text
The Full Text of this article is available as a PDF (290.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bresler S. E., Goryshin IYu, Lanzov V. A. The process of general recombination in Escherichia coli K-12: structure of intermediate products. Mol Gen Genet. 1981;183(1):139–143. doi: 10.1007/BF00270152. [DOI] [PubMed] [Google Scholar]
- Churchill M. E., Travers A. A. Protein motifs that recognize structural features of DNA. Trends Biochem Sci. 1991 Mar;16(3):92–97. doi: 10.1016/0968-0004(91)90040-3. [DOI] [PubMed] [Google Scholar]
- Dutreix M., Moreau P. L., Bailone A., Galibert F., Battista J. R., Walker G. C., Devoret R. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol. 1989 May;171(5):2415–2423. doi: 10.1128/jb.171.5.2415-2423.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eriksson S., Nordén B., Morimatsu K., Horii T., Takahashi M. Role of tyrosine residue 264 of RecA for the binding of cofactor and DNA. J Biol Chem. 1993 Jan 25;268(3):1811–1816. [PubMed] [Google Scholar]
- Hickson I. D., Gordon R. L., Tomkinson A. E., Emmerson P. T. A temperature sensitive Reca protein of Escherichia coli. Mol Gen Genet. 1981;184(1):68–72. doi: 10.1007/BF00271197. [DOI] [PubMed] [Google Scholar]
- Ikeda M., Hamano K., Shibata T. Epitope mapping of anti-recA protein IgGs by region specified polymerase chain reaction mutagenesis. J Biol Chem. 1992 Mar 25;267(9):6291–6296. [PubMed] [Google Scholar]
- Kawashima H., Horii T., Ogawa T., Ogawa H. Functional domains of Escherichia coli recA protein deduced from the mutational sites in the gene. Mol Gen Genet. 1984;193(2):288–292. doi: 10.1007/BF00330682. [DOI] [PubMed] [Google Scholar]
- Kowalczykowski S. C., Burk D. L., Krupp R. A. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein. J Mol Biol. 1989 Jun 20;207(4):719–733. doi: 10.1016/0022-2836(89)90239-8. [DOI] [PubMed] [Google Scholar]
- Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little J. W. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie. 1991 Apr;73(4):411–421. doi: 10.1016/0300-9084(91)90108-d. [DOI] [PubMed] [Google Scholar]
- Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. doi: 10.1016/0092-8674(82)90085-x. [DOI] [PubMed] [Google Scholar]
- Liu S. K., Eisen J. A., Hanawalt P. C., Tessman I. recA mutations that reduce the constitutive coprotease activity of the RecA1202(Prtc) protein: possible involvement of interfilament association in proteolytic and recombination activities. J Bacteriol. 1993 Oct;175(20):6518–6529. doi: 10.1128/jb.175.20.6518-6529.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lloyd R. G., Low B., Godson G. N., Birge E. A. Isolation and characterization of an Escherichia coli K-12 mutant with a temperature-sensitive recA- phenotype. J Bacteriol. 1974 Oct;120(1):407–415. doi: 10.1128/jb.120.1.407-415.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morimatsu K., Horii T. DNA-binding surface of RecA protein photochemical cross-linking of the first DNA binding site on RecA filament. Eur J Biochem. 1995 Dec 15;234(3):695–705. doi: 10.1111/j.1432-1033.1995.695_a.x. [DOI] [PubMed] [Google Scholar]
- Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
- Ogawa H., Ogawa T. General recombination: functions and structure of RecA protein. Adv Biophys. 1986;21:135–148. doi: 10.1016/0065-227x(86)90019-5. [DOI] [PubMed] [Google Scholar]
- Radding C. M. Helical interactions in homologous pairing and strand exchange driven by RecA protein. J Biol Chem. 1991 Mar 25;266(9):5355–5358. [PubMed] [Google Scholar]
- Roberts J. W., Roberts C. W. Two mutations that alter the regulatory activity of E. coli recA protein. Nature. 1981 Apr 2;290(5805):422–424. doi: 10.1038/290422a0. [DOI] [PubMed] [Google Scholar]
- Roca A. I., Cox M. M. The RecA protein: structure and function. Crit Rev Biochem Mol Biol. 1990;25(6):415–456. doi: 10.3109/10409239009090617. [DOI] [PubMed] [Google Scholar]
- Story R. M., Weber I. T., Steitz T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. doi: 10.1038/355318a0. [DOI] [PubMed] [Google Scholar]
- Wang W. B., Sassanfar M., Tessman I., Roberts J. W., Tessman E. S. Activation of protease-constitutive recA proteins of Escherichia coli by all of the common nucleoside triphosphates. J Bacteriol. 1988 Oct;170(10):4816–4822. doi: 10.1128/jb.170.10.4816-4822.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zlotnick A., Brenner S. L. An alpha-helical peptide model for electrostatic interactions of proteins with DNA. The N terminus of RecA. J Mol Biol. 1989 Oct 5;209(3):447–457. doi: 10.1016/0022-2836(89)90009-0. [DOI] [PubMed] [Google Scholar]