Abstract
Branched-chain amino acid uptake in Saccharomyces cerevisiae is mediated by at least three transport systems: the general amino acid permease Gap1p, the branched-chain amino acid permease Bap2p, and one or more so far unknown permeases. Regulation of the transcription of BAP2 is mainly subject to the presence of certain amino acids in the medium. The level of transcription is low during growth on a minimal medium with proline as the sole nitrogen source. As assayed with a lacZ fusion, the level of transcription is slightly higher (3-fold) on a minimal medium with ammonium ions as a nitrogen source, and transcription is induced about 20-fold by addition of leucine (0.2 mM). As little as 10 microM leucine causes a fivefold induction. Addition of (L)-leucine to minimal proline medium, on the other hand, has no effect on BAP2 transcription. The two known permeases for transport of branched-chain amino acids, Gap1p and Bap2p, are thus not active at the same time. The BAP2 promoter contains one or two putative Gcn4p binding sites and one putative Leu3p binding site. None of the three is needed for induction by leucine. Induction of BAP2 transcription by leucine is accompanied by an increase in branched-chain amino acid uptake. This elevation is interpreted to be partly the result of an increased level of the Bap2p permease in the plasma membrane, because deletion of BAP2 slightly decreases the induction of uptake. There is still a leucine-inducible increase in branched-chain amino acid uptake in a delta gap1 delta bap2 strain, indicating that BAP2 shares leucine induction with at least one remaining branched-chain amino acid-transporting permease.
Full Text
The Full Text of this article is available as a PDF (273.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boles E., Miosga T. A rapid and highly efficient method for PCR-based site-directed mutagenesis using only one new primer. Curr Genet. 1995 Jul;28(2):197–198. doi: 10.1007/BF00315788. [DOI] [PubMed] [Google Scholar]
- Calvo J. M., Matthews R. G. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):466–490. doi: 10.1128/mr.58.3.466-490.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabeel M., Grenson M. Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Eur J Biochem. 1970 May 1;14(1):197–204. doi: 10.1111/j.1432-1033.1970.tb00278.x. [DOI] [PubMed] [Google Scholar]
- Friden P., Schimmel P. LEU3 of Saccharomyces cerevisiae activates multiple genes for branched-chain amino acid biosynthesis by binding to a common decanucleotide core sequence. Mol Cell Biol. 1988 Jul;8(7):2690–2697. doi: 10.1128/mcb.8.7.2690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gits J. J., Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta. 1967 Jul 3;135(3):507–516. doi: 10.1016/0005-2736(67)90040-5. [DOI] [PubMed] [Google Scholar]
- Grauslund M., Didion T., Kielland-Brandt M. C., Andersen H. A. BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim Biophys Acta. 1995 Nov 30;1269(3):275–280. doi: 10.1016/0167-4889(95)00138-8. [DOI] [PubMed] [Google Scholar]
- Grenson M. Inactivation-reactivation process and repression of permease formation regulate several ammonia-sensitive permeases in the yeast Saccharomyces cerevisiae. Eur J Biochem. 1983 Jun 1;133(1):135–139. doi: 10.1111/j.1432-1033.1983.tb07438.x. [DOI] [PubMed] [Google Scholar]
- Grenson M., Mousset M., Wiame J. M., Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. doi: 10.1016/0304-4165(66)90387-4. [DOI] [PubMed] [Google Scholar]
- Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):339–346. doi: 10.1016/0304-4165(66)90388-6. [DOI] [PubMed] [Google Scholar]
- Grenson M. Study of the positive control of the general amino-acid permease and other ammonia-sensitive uptake systems by the product of the NPR1 gene in the yeast Saccharomyces cerevisiae. Eur J Biochem. 1983 Jun 1;133(1):141–144. doi: 10.1111/j.1432-1033.1983.tb07439.x. [DOI] [PubMed] [Google Scholar]
- Horák J. Amino acid transport in eucaryotic microorganisms. Biochim Biophys Acta. 1986 Dec 22;864(3-4):223–256. doi: 10.1016/0304-4157(86)90001-8. [DOI] [PubMed] [Google Scholar]
- Hu Y., Cooper T. G., Kohlhaw G. B. The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol Cell Biol. 1995 Jan;15(1):52–57. doi: 10.1128/mcb.15.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Island M. D., Naider F., Becker J. M. Regulation of dipeptide transport in Saccharomyces cerevisiae by micromolar amino acid concentrations. J Bacteriol. 1987 May;169(5):2132–2136. doi: 10.1128/jb.169.5.2132-2136.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jauniaux J. C., Grenson M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem. 1990 May 31;190(1):39–44. doi: 10.1111/j.1432-1033.1990.tb15542.x. [DOI] [PubMed] [Google Scholar]
- Jauniaux J. C., Vandenbol M., Vissers S., Broman K., Grenson M. Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem. 1987 May 4;164(3):601–606. doi: 10.1111/j.1432-1033.1987.tb11169.x. [DOI] [PubMed] [Google Scholar]
- Morrison C. E., Lichstein H. C. Regulation of lysine transport by feedback inhibition in Saccharomyces cerevisiae. J Bacteriol. 1976 Mar;125(3):864–871. doi: 10.1128/jb.125.3.864-871.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimer R. K., Johnston J. R. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986 May;113(1):35–43. doi: 10.1093/genetics/113.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagawa F., Fink G. R. The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8557–8561. doi: 10.1073/pnas.82.24.8557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry J. R., Basrai M. A., Steiner H. Y., Naider F., Becker J. M. Isolation and characterization of a Saccharomyces cerevisiae peptide transport gene. Mol Cell Biol. 1994 Jan;14(1):104–115. doi: 10.1128/mcb.14.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rai R., Genbauffe F., Lea H. Z., Cooper T. G. Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J Bacteriol. 1987 Aug;169(8):3521–3524. doi: 10.1128/jb.169.8.3521-3524.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sze J. Y., Woontner M., Jaehning J. A., Kohlhaw G. B. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate. Science. 1992 Nov 13;258(5085):1143–1145. doi: 10.1126/science.1439822. [DOI] [PubMed] [Google Scholar]
- Vandenbol M., Jauniaux J. C., Grenson M. The Saccharomyces cerevisiae NPR1 gene required for the activity of ammonia-sensitive amino acid permeases encodes a protein kinase homologue. Mol Gen Genet. 1990 Jul;222(2-3):393–399. doi: 10.1007/BF00633845. [DOI] [PubMed] [Google Scholar]
- Wiame J. M., Grenson M., Arst H. N., Jr Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol. 1985;26:1–88. doi: 10.1016/s0065-2911(08)60394-x. [DOI] [PubMed] [Google Scholar]