Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(7):2044–2050. doi: 10.1128/jb.178.7.2044-2050.1996

Exclusion of T4 phage by the hok/sok killer locus from plasmid R1.

D C Pecota 1, T K Wood 1
PMCID: PMC177903  PMID: 8606182

Abstract

The hok (host killing) and sok (suppressor of killing) genes (hok/sok) efficiently maintain the low-copy-number plasmid R1. To investigate whether the hok/sok locus evolved as a phage-exclusion mechanism, Escherichia coli cells that contain hok/sok on a pBR322-based plasmid were challenged with T1, T4, T5, T7, and lambda phage. Upon infection with T4, the optical density of cells containing hok/sok on a high-copy-number plasmid continued to increase whereas the optical density for those lacking hok/sok rapidly declined. The presence of hok/sok reduced the efficiency of plating of T4 by 42% and decreased the plaque size by approximately 85%. Single-step growth experiments demonstrated that hok/sok decreased the T4 burst size by 40%, increased the time to form mature phage (eclipse time) from 22 to 30 min, and increased the time to cell lysis (latent period) from 30 to 60 min. These results further suggest that single cells exhibit altruistic behavior.

Full Text

The Full Text of this article is available as a PDF (275.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bech F. W., Jørgensen S. T., Diderichsen B., Karlström O. H. Sequence of the relB transcription unit from Escherichia coli and identification of the relB gene. EMBO J. 1985 Apr;4(4):1059–1066. doi: 10.1002/j.1460-2075.1985.tb03739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergsland K. J., Kao C., Yu Y. T., Gulati R., Snyder L. A site in the T4 bacteriophage major head protein gene that can promote the inhibition of all translation in Escherichia coli. J Mol Biol. 1990 Jun 5;213(3):477–494. doi: 10.1016/S0022-2836(05)80209-8. [DOI] [PubMed] [Google Scholar]
  3. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
  4. Cram H. K., Cram D., Skurray R. F plasmid pif region: Tn1725 mutagenesis and polypeptide analysis. Gene. 1984 Dec;32(1-2):251–254. doi: 10.1016/0378-1119(84)90053-2. [DOI] [PubMed] [Google Scholar]
  5. Feng J., Yamanaka K., Niki H., Ogura T., Hiraga S. New killing system controlled by two genes located immediately upstream of the mukB gene in Escherichia coli. Mol Gen Genet. 1994 Apr;243(2):136–147. doi: 10.1007/BF00280310. [DOI] [PubMed] [Google Scholar]
  6. García L. R., Molineux I. J. Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J Bacteriol. 1995 Jul;177(14):4066–4076. doi: 10.1128/jb.177.14.4066-4076.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gausing K. Efficiency of protein and messenger RNA synthesis in bacteriophage T4-infected cells of Escherichia coli. J Mol Biol. 1972 Nov 28;71(3):529–545. doi: 10.1016/s0022-2836(72)80021-4. [DOI] [PubMed] [Google Scholar]
  8. Gerdes K., Bech F. W., Jørgensen S. T., Løbner-Olesen A., Rasmussen P. B., Atlung T., Boe L., Karlstrom O., Molin S., von Meyenburg K. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J. 1986 Aug;5(8):2023–2029. doi: 10.1002/j.1460-2075.1986.tb04459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gerdes K., Poulsen L. K., Thisted T., Nielsen A. K., Martinussen J., Andreasen P. H. The hok killer gene family in gram-negative bacteria. New Biol. 1990 Nov;2(11):946–956. [PubMed] [Google Scholar]
  10. Gerdes K., Thisted T., Martinussen J. Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol Microbiol. 1990 Nov;4(11):1807–1818. doi: 10.1111/j.1365-2958.1990.tb02029.x. [DOI] [PubMed] [Google Scholar]
  11. Jaffé A., Ogura T., Hiraga S. Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol. 1985 Sep;163(3):841–849. doi: 10.1128/jb.163.3.841-849.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jensen R. B., Grohmann E., Schwab H., Díaz-Orejas R., Gerdes K. Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1. Mol Microbiol. 1995 Jul;17(2):211–220. doi: 10.1111/j.1365-2958.1995.mmi_17020211.x. [DOI] [PubMed] [Google Scholar]
  13. Kano-Sueoka T., Sueoka N. Characterization of a modified leucyl-tRNA of Escherichia coli after bacteriophage T2 infection. J Mol Biol. 1968 Nov 14;37(3):475–491. doi: 10.1016/0022-2836(68)90116-2. [DOI] [PubMed] [Google Scholar]
  14. Krüger D. H., Schroeder C. Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol Rev. 1981 Mar;45(1):9–51. doi: 10.1128/mr.45.1.9-51.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kulakauskas S., Lubys A., Ehrlich S. D. DNA restriction-modification systems mediate plasmid maintenance. J Bacteriol. 1995 Jun;177(12):3451–3454. doi: 10.1128/jb.177.12.3451-3454.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lehnherr H., Yarmolinsky M. B. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3274–3277. doi: 10.1073/pnas.92.8.3274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lenski R. E., Mittler J. E. The directed mutation controversy and neo-Darwinism. Science. 1993 Jan 8;259(5092):188–194. doi: 10.1126/science.7678468. [DOI] [PubMed] [Google Scholar]
  18. Masuda Y., Miyakawa K., Nishimura Y., Ohtsubo E. chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. J Bacteriol. 1993 Nov;175(21):6850–6856. doi: 10.1128/jb.175.21.6850-6856.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCorquodale D. J., Lanni Y. T. Patterns of protein synthesis in Escherichia coli infected by amber mutants in the first-step-transfer DNA of T5. J Mol Biol. 1970 Feb 28;48(1):133–143. doi: 10.1016/0022-2836(70)90224-x. [DOI] [PubMed] [Google Scholar]
  20. McCorquodale D. J. The T-odd bacteriophages. CRC Crit Rev Microbiol. 1975 Dec;4(2):101–159. doi: 10.3109/10408417509111574. [DOI] [PubMed] [Google Scholar]
  21. Molineux I. J. Host-parasite interactions: recent developments in the genetics of abortive phage infections. New Biol. 1991 Mar;3(3):230–236. [PubMed] [Google Scholar]
  22. Poulsen L. K., Larsen N. W., Molin S., Andersson P. A family of genes encoding a cell-killing function may be conserved in all gram-negative bacteria. Mol Microbiol. 1989 Nov;3(11):1463–1472. doi: 10.1111/j.1365-2958.1989.tb00131.x. [DOI] [PubMed] [Google Scholar]
  23. Poulsen L. K., Refn A., Molin S., Andersson P. The gef gene from Escherichia coli is regulated at the level of translation. Mol Microbiol. 1991 Jul;5(7):1639–1648. doi: 10.1111/j.1365-2958.1991.tb01911.x. [DOI] [PubMed] [Google Scholar]
  24. Poulsen L. K., Refn A., Molin S., Andersson P. Topographic analysis of the toxic Gef protein from Escherichia coli. Mol Microbiol. 1991 Jul;5(7):1627–1637. doi: 10.1111/j.1365-2958.1991.tb01910.x. [DOI] [PubMed] [Google Scholar]
  25. Rahmsdorf H. J., Pai S. H., Ponta H., Herrlich P., Roskoski R., Jr, Schweiger M., Studier F. W. Protein kinase induction in Escherichia coli by bacteriophage T7. Proc Natl Acad Sci U S A. 1974 Feb;71(2):586–589. doi: 10.1073/pnas.71.2.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roberts R. C., Ström A. R., Helinski D. R. The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. J Mol Biol. 1994 Mar 18;237(1):35–51. doi: 10.1006/jmbi.1994.1207. [DOI] [PubMed] [Google Scholar]
  27. Robertson E. S., Aggison L. A., Nicholson A. W. Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol Microbiol. 1994 Mar;11(6):1045–1057. doi: 10.1111/j.1365-2958.1994.tb00382.x. [DOI] [PubMed] [Google Scholar]
  28. Sanson B., Uzan M. Dual role of the sequence-specific bacteriophage T4 endoribonuclease RegB. mRNA inactivation and mRNA destabilization. J Mol Biol. 1993 Oct 5;233(3):429–446. doi: 10.1006/jmbi.1993.1522. [DOI] [PubMed] [Google Scholar]
  29. Schmitt C. K., Molineux I. J. Expression of gene 1.2 and gene 10 of bacteriophage T7 is lethal to F plasmid-containing Escherichia coli. J Bacteriol. 1991 Feb;173(4):1536–1543. doi: 10.1128/jb.173.4.1536-1543.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shub D. A. Bacterial viruses. Bacterial altruism? Curr Biol. 1994 Jun 1;4(6):555–556. doi: 10.1016/s0960-9822(00)00124-x. [DOI] [PubMed] [Google Scholar]
  31. Snyder L. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol Microbiol. 1995 Feb;15(3):415–420. doi: 10.1111/j.1365-2958.1995.tb02255.x. [DOI] [PubMed] [Google Scholar]
  32. Stark M. J. Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene. 1987;51(2-3):255–267. doi: 10.1016/0378-1119(87)90314-3. [DOI] [PubMed] [Google Scholar]
  33. Thisted T., Sørensen N. S., Gerdes K. Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding. J Mol Biol. 1995 Apr 14;247(5):859–873. doi: 10.1006/jmbi.1995.0186. [DOI] [PubMed] [Google Scholar]
  34. Tsuchimoto S., Nishimura Y., Ohtsubo E. The stable maintenance system pem of plasmid R100: degradation of PemI protein may allow PemK protein to inhibit cell growth. J Bacteriol. 1992 Jul;174(13):4205–4211. doi: 10.1128/jb.174.13.4205-4211.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tyndall C., Meister J., Bickle T. A. The Escherichia coli prr region encodes a functional type IC DNA restriction system closely integrated with an anticodon nuclease gene. J Mol Biol. 1994 Apr 1;237(3):266–274. doi: 10.1006/jmbi.1994.1230. [DOI] [PubMed] [Google Scholar]
  36. Van Melderen L., Bernard P., Couturier M. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol Microbiol. 1994 Mar;11(6):1151–1157. doi: 10.1111/j.1365-2958.1994.tb00391.x. [DOI] [PubMed] [Google Scholar]
  37. Wagner E. F., Ponta H., Schweiger M. Development of Escherichia coli virus T1. The role of the proton-motive force. J Biol Chem. 1980 Jan 25;255(2):534–539. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES