Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(8):2178–2185. doi: 10.1128/jb.178.8.2178-2185.1996

Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.

C Marty-Teysset 1, C Posthuma 1, J S Lolkema 1, P Schmitt 1, C Divies 1, W N Konings 1
PMCID: PMC177923  PMID: 8636016

Abstract

In Leuconostoc mesenteroides subsp. mesenteroides 19D, citrate is transported by a secondary citrate carrier (CitP). Previous studies of the kinetics and mechanism of CitP performed in membrane vesicles of L. mesenteroides showed that CitP catalyzes divalent citrate HCit2-/H+ symport, indicative of metabolic energy generation by citrate metabolism via a secondary mechanism (C. Marty-Teysset, J. S. Lolkema, P. Schmitt, C. Divies, and W. N. Konings, J. Biol. Chem. 270:25370-25376, 1995). This study also revealed an efficient exchange of citrate and D-lactate, a product of citrate/carbohydrate cometabolism, suggesting that under physiological conditions, CitP may function as a precursor/product exchanger rather than a symporter. In this paper, the energetic consequences of citrate metabolism were investigated in resting cells of L. mesenteroides. The generation of metabolic energy in the form of a pH gradient (delta pH) and a membrane potential (delta psi) by citrate metabolism was found to be largely dependent on cometabolism with glucose. Furthermore, in the presence of glucose, the rates of citrate utilization and of pyruvate and lactate production were strongly increased, indicating an enhancement of citrate metabolism by glucose metabolism. The rate of citrate metabolism under these conditions was slowed down by the presence of a membrane potential across the cytoplasmic membrane. The production of D-lactate inside the cell during cometabolism was shown to be responsible for the enhancement of the electrogenic uptake of citrate. Cells loaded with D-lactate generated a delta psi upon dilution in buffer containing citrate, and cells incubated with citrate built up a pH gradient upon addition of D-lactate. The results are consistent with an electrogenic citrate/D-lactate exchange generating in vivo metabolic energy in the form of a proton electrochemical gradient across the membrane. The generation of metabolic energy from citrate metabolism in L. mesenteroides may contribute significantly to the growth advantage observed during cometabolism of citrate and glucose.

Full Text

The Full Text of this article is available as a PDF (246.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anantharam V., Allison M. J., Maloney P. C. Oxalate:formate exchange. The basis for energy coupling in Oxalobacter. J Biol Chem. 1989 May 5;264(13):7244–7250. [PubMed] [Google Scholar]
  2. Hugenholtz J., Perdon L., Abee T. Growth and Energy Generation by Lactococcus lactis subsp. lactis biovar diacetylactis during Citrate Metabolism. Appl Environ Microbiol. 1993 Dec;59(12):4216–4222. doi: 10.1128/aem.59.12.4216-4222.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kempler G. M., McKay L. L. Improved Medium for Detection of Citrate-Fermenting Streptococcus lactis subsp. diacetylactis. Appl Environ Microbiol. 1980 Apr;39(4):926–927. doi: 10.1128/aem.39.4.926-927.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Konings W. N., Poolman B., van Veen H. W. Solute transport and energy transduction in bacteria. Antonie Van Leeuwenhoek. 1994;65(4):369–380. doi: 10.1007/BF00872220. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lolkema J. S., Poolman B., Konings W. N. Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr. 1995 Aug;27(4):467–473. doi: 10.1007/BF02110009. [DOI] [PubMed] [Google Scholar]
  7. Marty-Teysset C., Lolkema J. S., Schmitt P., Divies C., Konings W. N. Membrane potential-generating transport of citrate and malate catalyzed by CitP of Leuconostoc mesenteroides. J Biol Chem. 1995 Oct 27;270(43):25370–25376. doi: 10.1074/jbc.270.43.25370. [DOI] [PubMed] [Google Scholar]
  8. Molenaar D., Abee T., Konings W. N. Continuous measurement of the cytoplasmic pH in Lactococcus lactis with a fluorescent pH indicator. Biochim Biophys Acta. 1991 Nov 14;1115(1):75–83. doi: 10.1016/0304-4165(91)90014-8. [DOI] [PubMed] [Google Scholar]
  9. Molenaar D., Bosscher J. S., ten Brink B., Driessen A. J., Konings W. N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol. 1993 May;175(10):2864–2870. doi: 10.1128/jb.175.10.2864-2870.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):125–147. doi: 10.1111/j.1574-6976.1993.tb00015.x. [DOI] [PubMed] [Google Scholar]
  11. Poolman B., Molenaar D., Smid E. J., Ubbink T., Abee T., Renault P. P., Konings W. N. Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol. 1991 Oct;173(19):6030–6037. doi: 10.1128/jb.173.19.6030-6037.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ramos A., Poolman B., Santos H., Lolkema J. S., Konings W. N. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos. J Bacteriol. 1994 Aug;176(16):4899–4905. doi: 10.1128/jb.176.16.4899-4905.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Salema M., Poolman B., Lolkema J. S., Dias M. C., Konings W. N. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. Eur J Biochem. 1994 Oct 1;225(1):289–295. doi: 10.1111/j.1432-1033.1994.00289.x. [DOI] [PubMed] [Google Scholar]
  14. Starrenburg M. J., Hugenholtz J. Citrate Fermentation by Lactococcus and Leuconostoc spp. Appl Environ Microbiol. 1991 Dec;57(12):3535–3540. doi: 10.1128/aem.57.12.3535-3540.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES