Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(8):2196–2203. doi: 10.1128/jb.178.8.2196-2203.1996

In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2.

M R Rondon 1, J C Escalante-Semerena 1
PMCID: PMC177925  PMID: 8636018

Abstract

The PocR protein of Salmonella typhimurium LT2 was overexpressed and used to demonstrate in vitro that it specifically binds to the cobalamin biosynthetic operon (cob) promoter region. Evidence is presented to show that PocR DNA-binding activity in vitro is regulated by the effector molecule 1,2-propanediol. Deletion analysis of the cob promoter (Pcob) suggested that two regions upstream of the promoter are needed for optimal activation of Pcob by PocR in vivo. DNase I footprinting experiments demonstrated that PocR binds to two sites within Pcob. The transcription initiation site of cob mRNA in response to 1,2-propanediol was identified and shown to be different from the one reported for transcription initiation under anoxic conditions in the absence of 1,2-propanediol.

Full Text

The Full Text of this article is available as a PDF (527.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ailion M., Bobik T. A., Roth J. R. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. J Bacteriol. 1993 Nov;175(22):7200–7208. doi: 10.1128/jb.175.22.7200-7208.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson D. I. Involvement of the Arc system in redox regulation of the Cob operon in Salmonella typhimurium. Mol Microbiol. 1992 Jun;6(11):1491–1494. doi: 10.1111/j.1365-2958.1992.tb00869.x. [DOI] [PubMed] [Google Scholar]
  3. Bobik T. A., Ailion M., Roth J. R. A single regulatory gene integrates control of vitamin B12 synthesis and propanediol degradation. J Bacteriol. 1992 Apr;174(7):2253–2266. doi: 10.1128/jb.174.7.2253-2266.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carra J. H., Schleif R. F. Variation of half-site organization and DNA looping by AraC protein. EMBO J. 1993 Jan;12(1):35–44. doi: 10.1002/j.1460-2075.1993.tb05629.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
  6. Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen P., Ailion M., Bobik T., Stormo G., Roth J. Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J Bacteriol. 1995 Oct;177(19):5401–5410. doi: 10.1128/jb.177.19.5401-5410.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen P., Andersson D. I., Roth J. R. The control region of the pdu/cob regulon in Salmonella typhimurium. J Bacteriol. 1994 Sep;176(17):5474–5482. doi: 10.1128/jb.176.17.5474-5482.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drapal N., Sawers G. Purification of ArcA and analysis of its specific interaction with the pfl promoter-regulatory region. Mol Microbiol. 1995 May;16(3):597–607. doi: 10.1111/j.1365-2958.1995.tb02422.x. [DOI] [PubMed] [Google Scholar]
  10. Egan S. M., Schleif R. F. DNA-dependent renaturation of an insoluble DNA binding protein. Identification of the RhaS binding site at rhaBAD. J Mol Biol. 1994 Nov 11;243(5):821–829. doi: 10.1006/jmbi.1994.1684. [DOI] [PubMed] [Google Scholar]
  11. Escalante-Semerena J. C., Roth J. R. Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol. 1987 May;169(5):2251–2258. doi: 10.1128/jb.169.5.2251-2258.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Escalante-Semerena J. C., Suh S. J., Roth J. R. cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J Bacteriol. 1990 Jan;172(1):273–280. doi: 10.1128/jb.172.1.273-280.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frey B., McCloskey J., Kersten W., Kersten H. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. J Bacteriol. 1988 May;170(5):2078–2082. doi: 10.1128/jb.170.5.2078-2082.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grabau C., Roth J. R. A Salmonella typhimurium cobalamin-deficient mutant blocked in 1-amino-2-propanol synthesis. J Bacteriol. 1992 Apr;174(7):2138–2144. doi: 10.1128/jb.174.7.2138-2144.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jeter R. M. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol. 1990 May;136(5):887–896. doi: 10.1099/00221287-136-5-887. [DOI] [PubMed] [Google Scholar]
  16. Jeter R. M., Olivera B. M., Roth J. R. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J Bacteriol. 1984 Jul;159(1):206–213. doi: 10.1128/jb.159.1.206-213.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jeter R. M., Roth J. R. Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1987 Jul;169(7):3189–3198. doi: 10.1128/jb.169.7.3189-3198.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Martinez E., Bartolomé B., de la Cruz F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene. 1988 Aug 15;68(1):159–162. doi: 10.1016/0378-1119(88)90608-7. [DOI] [PubMed] [Google Scholar]
  20. Newlands J. T., Ross W., Gosink K. K., Gourse R. L. Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. J Mol Biol. 1991 Aug 5;220(3):569–583. doi: 10.1016/0022-2836(91)90101-b. [DOI] [PubMed] [Google Scholar]
  21. Norrander J., Kempe T., Messing J. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene. 1983 Dec;26(1):101–106. doi: 10.1016/0378-1119(83)90040-9. [DOI] [PubMed] [Google Scholar]
  22. O'Toole G. A., Rondon M. R., Escalante-Semerena J. C. Analysis of mutants of Salmonella typhimurium defective in the synthesis of the nucleotide loop of cobalamin. J Bacteriol. 1993 Jun;175(11):3317–3326. doi: 10.1128/jb.175.11.3317-3326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Toole G. A., Trzebiatowski J. R., Escalante-Semerena J. C. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem. 1994 Oct 21;269(42):26503–26511. [PubMed] [Google Scholar]
  24. Richter-Dahlfors A. A., Andersson D. I. Analysis of an anaerobically induced promoter for the cobalamin biosynthetic genes in Salmonella typhimurium. Mol Microbiol. 1991 Jun;5(6):1337–1345. doi: 10.1111/j.1365-2958.1991.tb00780.x. [DOI] [PubMed] [Google Scholar]
  25. Rondon M. R., Escalante-Semerena J. C. The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol. 1992 Apr;174(7):2267–2272. doi: 10.1128/jb.174.7.2267-2272.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rondon M. R., Kazmierczak R., Escalante-Semerena J. C. Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2. J Bacteriol. 1995 Oct;177(19):5434–5439. doi: 10.1128/jb.177.19.5434-5439.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roth J. R., Lawrence J. G., Rubenfield M., Kieffer-Higgins S., Church G. M. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1993 Jun;175(11):3303–3316. doi: 10.1128/jb.175.11.3303-3316.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
  29. Singh-Wissmann K., Ferry J. G. Transcriptional regulation of the phosphotransacetylase-encoding and acetate kinase-encoding genes (pta and ack) from Methanosarcina thermophila. J Bacteriol. 1995 Apr;177(7):1699–1702. doi: 10.1128/jb.177.7.1699-1702.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  31. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  32. Tang X., Nakata Y., Li H. O., Zhang M., Gao H., Fujita A., Sakatsume O., Ohta T., Yokoyama K. The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res. 1994 Jul 25;22(14):2857–2858. doi: 10.1093/nar/22.14.2857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tomizawa J. Control of ColE1 plasmid replication: initial interaction of RNA I and the primer transcript is reversible. Cell. 1985 Mar;40(3):527–535. doi: 10.1016/0092-8674(85)90201-6. [DOI] [PubMed] [Google Scholar]
  34. Tsai S. P., Hartin R. J., Ryu J. Transformation in restriction-deficient Salmonella typhimurium LT2. J Gen Microbiol. 1989 Sep;135(9):2561–2567. doi: 10.1099/00221287-135-9-2561. [DOI] [PubMed] [Google Scholar]
  35. Way J. C., Davis M. A., Morisato D., Roberts D. E., Kleckner N. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene. 1984 Dec;32(3):369–379. doi: 10.1016/0378-1119(84)90012-x. [DOI] [PubMed] [Google Scholar]
  36. Youderian P., Sugiono P., Brewer K. L., Higgins N. P., Elliott T. Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics. 1988 Apr;118(4):581–592. doi: 10.1093/genetics/118.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES