Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Apr;178(8):2263–2271. doi: 10.1128/jb.178.8.2263-2271.1996

Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans.

P Talaga 1, B Stahl 1, J M Wieruszeski 1, F Hillenkamp 1, S Tsuyumu 1, G Lippens 1, J P Bohin 1
PMCID: PMC177934  PMID: 8636027

Abstract

The cell-associated glucans produced by Burkholderia solanacearum and Xanthomonas campestris pv. citri were isolated by trichloroacetic acid treatment and gel permeation chromatography. The compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry, and high-performance anion-exchange chromatography. B. solanacearum synthesizes only a neutral cyclic glucan containing 13 glucose residues, and X. campestris pv. citri synthesizes a neutral cyclic glucan containing 16 glucose residues. The two glucans were further purified by high-performance anion-exchange chromatography. Methylation analysis revealed that these glucans are linked by 1,2-glycosidic bonds and one 1,6-glycosidic bond. Our 600-MHz homonuclear and 1H-13C heteronuclear nuclear magnetic resonance experiments revealed the presence of a single alpha-1,6-glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The presence of this single alpha-1,6 linkage, however, induces such structural constraints in these cyclic glucans that all individual glucose residues could be distinguished. The different anomeric proton signals allowed complete sequence-specific assignment of both glucans. The structural characteristics of these glucans contrast with those of the previously described osmoregulated periplasmic glucans.

Full Text

The Full Text of this article is available as a PDF (319.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemura A., Cabrera-Crespo J. Extracellular oligosaccharides and low-Mr polysaccharides containing (1----2)-beta-D-glucosidic linkages from strains of Xanthomonas, Escherichia coli and Klebsiella pneumoniae. J Gen Microbiol. 1986 Sep;132(9):2443–2452. doi: 10.1099/00221287-132-9-2443. [DOI] [PubMed] [Google Scholar]
  2. André I., Mazeau K., Taravel F. R., Tvaroska I. Conformation and dynamics of a cyclic (1-->2)-beta-D-glucan. Int J Biol Macromol. 1995 Jun;17(3-4):189–198. doi: 10.1016/0141-8130(95)92685-j. [DOI] [PubMed] [Google Scholar]
  3. Breedveld M. W., Miller K. J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev. 1994 Jun;58(2):145–161. doi: 10.1128/mr.58.2.145-161.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fournet B., Strecker G., Leroy Y., Montreuil J. Gas--liquid chromatography and mass spectrometry of methylated and acetylated methyl glycosides. Application to the structural analysis of glycoprotein glycans. Anal Biochem. 1981 Sep 15;116(2):489–502. doi: 10.1016/0003-2697(81)90393-6. [DOI] [PubMed] [Google Scholar]
  5. Geremia R. A., Cavaignac S., Zorreguieta A., Toro N., Olivares J., Ugalde R. A. A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form beta-(1----2) glucan. J Bacteriol. 1987 Feb;169(2):880–884. doi: 10.1128/jb.169.2.880-884.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hisamatsu M. Cyclic (1----2)-beta-D-glucans (cyclosophorans) produced by Agrobacterium and Rhizobium species. Carbohydr Res. 1992 Jul 2;231:137–146. doi: 10.1016/0008-6215(92)84014-j. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Leigh J. A., Walker G. C. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet. 1994 Feb;10(2):63–67. doi: 10.1016/0168-9525(94)90151-1. [DOI] [PubMed] [Google Scholar]
  9. Long S. R., Staskawicz B. J. Prokaryotic plant parasites. Cell. 1993 Jun 4;73(5):921–935. doi: 10.1016/0092-8674(93)90271-q. [DOI] [PubMed] [Google Scholar]
  10. Loubens I., Debarbieux L., Bohin A., Lacroix J. M., Bohin J. P. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae. Mol Microbiol. 1993 Oct;10(2):329–340. doi: 10.1111/j.1365-2958.1993.tb01959.x. [DOI] [PubMed] [Google Scholar]
  11. Miller K. J., Gore R. S., Benesi A. J. Phosphoglycerol substituents present on the cyclic beta-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol. 1988 Oct;170(10):4569–4575. doi: 10.1128/jb.170.10.4569-4575.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller K. J., Gore R. S., Johnson R., Benesi A. J., Reinhold V. N. Cell-associated oligosaccharides of Bradyrhizobium spp. J Bacteriol. 1990 Jan;172(1):136–142. doi: 10.1128/jb.172.1.136-142.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mukhopadhyay P., Williams J., Mills D. Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae. J Bacteriol. 1988 Dec;170(12):5479–5488. doi: 10.1128/jb.170.12.5479-5488.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parente J. P., Cardon P., Leroy Y., Montreuil J., Fournet B., Ricart G. A convenient method for methylation of glycoprotein glycans in small amounts by using lithium methylsulfinyl carbanion. Carbohydr Res. 1985 Aug 15;141(1):41–47. doi: 10.1016/s0008-6215(00)90753-5. [DOI] [PubMed] [Google Scholar]
  15. Poppe L., York W. S., van Halbeek H. Measurement of inter-glycosidic 13C-1H coupling constants in a cyclic beta(1-->2)-glucan by 13C-filtered 2D (1H,1H)ROESY. J Biomol NMR. 1993 Jan;3(1):81–89. doi: 10.1007/BF00242477. [DOI] [PubMed] [Google Scholar]
  16. Puvanesarajah V., Schell F. M., Stacey G., Douglas C. J., Nester E. W. Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens. J Bacteriol. 1985 Oct;164(1):102–106. doi: 10.1128/jb.164.1.102-106.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rolin D. B., Pfeffer P. E., Osman S. F., Szwergold B. S., Kappler F., Benesi A. J. Structural studies of a phosphocholine substituted beta-(1,3);(1,6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta. 1992 Jun 12;1116(3):215–225. doi: 10.1016/0304-4165(92)90014-l. [DOI] [PubMed] [Google Scholar]
  18. Talaga P., Fournet B., Bohin J. P. Periplasmic glucans of Pseudomonas syringae pv. syringae. J Bacteriol. 1994 Nov;176(21):6538–6544. doi: 10.1128/jb.176.21.6538-6544.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Williamson G., Damani K., Devenney P., Faulds C. B., Morris V. J., Stevens B. J. Mechanism of action of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens: competition between cyclization and elongation reactions. J Bacteriol. 1992 Dec;174(24):7941–7947. doi: 10.1128/jb.174.24.7941-7947.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. York W. S., Thomsen J. U., Meyer B. The conformations of cyclic (1-->2)-beta-D-glucans: application of multidimensional clustering analysis to conformational data sets obtained by Metropolis Monte Carlo calculations. Carbohydr Res. 1993 Oct 4;248:55–80. doi: 10.1016/0008-6215(93)84116-n. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES