Abstract
An amidase capable of degrading acrylamide and aliphatic amides was purified to apparent homogeneity from Klebsiella pneumoniae NCTR 1. The enzyme is a monomer with an apparent molecular weight of 62,000. The pH and temperature optima of the enzyme were 7.0 and 65 degrees C, respectively. The purified amidase contained 11 5,5-dithiobis(2-nitrobenzoate) (DTNB)-titratable sulfhydryl (SH) groups. In the native enzyme 1.0 SH group readily reacted with DTNB with no detectable loss of activity. Titration of the next 3.0 SH groups with DTNB resulted in a loss of activity of more than 70%. The remaining seven inaccessible SH groups could be titrated only in the presence of 8 M guanidine hydrochloride. Titration of SH groups was strongly inhibited by carboxymethylation and KMnO4, suggesting the presence of SH groups at the active site(s). Inductively coupled plasma-atomic emission spectrometry analysis indicated that the native amidase contains 0.33 mol of cobalt and 0.33 mol of iron per mol of the native enzyme. Polyclonal antiserum against K. pneumoniae amidase was raised in rabbits, and immunochemical comparisons were made with amidases from Rhodococcus sp., Mycobacterium smegmatis, Pseudomonas chlororaphis B23, and Methylophilus methylotrophus. The antiserum immunoprecipitated and immunoreacted with the amidases of K. pneumoniae and P. chlororaphis B23. The antiserum failed to immunoreact or immunoprecipitate with other amidases.
Full Text
The Full Text of this article is available as a PDF (237.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alt J., Krisch K. Isolation of an inducible amidase from Pseudomonas acidovorans AE1. J Gen Microbiol. 1975 Apr;87(2):260–272. doi: 10.1099/00221287-87-2-260. [DOI] [PubMed] [Google Scholar]
- Altamirano M. M., Mulliert G., Calcagno M. Sulfhydryl groups of glucosamine-6-phosphate isomerase deaminase from Escherichia coli. Arch Biochem Biophys. 1987 Oct;258(1):95–100. doi: 10.1016/0003-9861(87)90326-2. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bruce A. W., Sira S. S., Clark A. F., Awad S. A. The problem of catheter encrustation. Can Med Assoc J. 1974 Aug 3;111(3):238–passim. [PMC free article] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Chapatwala K. D., Nawaz M. S., Richardson J. D., Wolfram J. H. Isolation and characterization of acetonitrile utilizing bacteria. J Ind Microbiol. 1990 Apr-May;5(2-3):65–70. doi: 10.1007/BF01573854. [DOI] [PubMed] [Google Scholar]
- Ciskanik L. M., Wilczek J. M., Fallon R. D. Purification and Characterization of an Enantioselective Amidase from Pseudomonas chlororaphis B23. Appl Environ Microbiol. 1995 Mar;61(3):998–1003. doi: 10.1128/aem.61.3.998-1003.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dearfield K. L., Abernathy C. O., Ottley M. S., Brantner J. H., Hayes P. F. Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat Res. 1988 Jan;195(1):45–77. doi: 10.1016/0165-1110(88)90015-2. [DOI] [PubMed] [Google Scholar]
- Divi R. L., Doerge D. R. Mechanism-based inactivation of lactoperoxidase and thyroid peroxidase by resorcinol derivatives. Biochemistry. 1994 Aug 16;33(32):9668–9674. doi: 10.1021/bi00198a036. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Grant D. J., Wilson J. V. Degradation and hydrolysis of amides by Corynebacterium pseudodiphtheriticum NCIB 10803. Microbios. 1973 Jun-Aug;8(29):15–22. [PubMed] [Google Scholar]
- Hynes M. J., Pateman J. A. The use of amides as nitrogen sources by Aspergillus nidulans. J Gen Microbiol. 1970 Nov;63(3):317–324. doi: 10.1099/00221287-63-3-317. [DOI] [PubMed] [Google Scholar]
- Kaplan A. The determination of urea, ammonia, and urease. Methods Biochem Anal. 1969;17:311–324. doi: 10.1002/9780470110355.ch7. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mahenthiralingam E., Draper P., Davis E. O., Colston M. J. Cloning and sequencing of the gene which encodes the highly inducible acetamidase of Mycobacterium smegmatis. J Gen Microbiol. 1993 Mar;139(3):575–583. doi: 10.1099/00221287-139-3-575. [DOI] [PubMed] [Google Scholar]
- Nawaz M. S., Chapatwala K. D. Simultaneous degradation of acetonitrile and biphenyl by Pseudomonas aeruginosa. Can J Microbiol. 1991 Jun;37(6):411–418. doi: 10.1139/m91-067. [DOI] [PubMed] [Google Scholar]
- Nawaz M. S., Chapatwala K. D., Wolfram J. H. Degradation of Acetonitrile by Pseudomonas putida. Appl Environ Microbiol. 1989 Sep;55(9):2267–2274. doi: 10.1128/aem.55.9.2267-2274.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nawaz M. S., Franklin W., Campbell W. L., Heinze T. M., Cerniglia C. E. Metabolism of acrylonitrile by Klebsiella pneumoniae. Arch Microbiol. 1991;156(3):231–238. doi: 10.1007/BF00249120. [DOI] [PubMed] [Google Scholar]
- Nawaz M. S., Franklin W., Cerniglia C. E. Degradation of acrylamide by immobilized cells of a Pseudomonas sp. and Xanthomonas maltophilia. Can J Microbiol. 1993 Feb;39(2):207–212. doi: 10.1139/m93-029. [DOI] [PubMed] [Google Scholar]
- Nawaz M. S., Heinze T. M., Cerniglia C. E. Metabolism of benzonitrile and butyronitrile by Klebsiella pneumoniae. Appl Environ Microbiol. 1992 Jan;58(1):27–31. doi: 10.1128/aem.58.1.27-31.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nawaz M. S., Khan A. A., Seng J. E., Leakey J. E., Siitonen P. H., Cerniglia C. E. Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Appl Environ Microbiol. 1994 Sep;60(9):3343–3348. doi: 10.1128/aem.60.9.3343-3348.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuhäuser-Klaus A., Schmahl W. Mutagenic and teratogenic effects of acrylamide in the mammalian spot test. Mutat Res. 1989 Jul;226(3):157–162. doi: 10.1016/0165-7992(89)90013-4. [DOI] [PubMed] [Google Scholar]
- Roberts M. F., Switzer R. L., Schubert K. R. Inactivation of Salmonella phosphoribosylpyrophosphate synthetase by oxidation of a specific sulfhydryl group with potassium permanganate. J Biol Chem. 1975 Jul 25;250(14):5364–5369. [PubMed] [Google Scholar]
- Rosenstein I. J. Urinary calculi: microbiological and crystallographic studies. Crit Rev Clin Lab Sci. 1986;23(3):245–277. doi: 10.3109/10408368609165802. [DOI] [PubMed] [Google Scholar]
- Sabbaj J., Sutter V. L., Finegold S. M. Urease and deaminase activities of fecal bacteria in hepatic coma. Antimicrob Agents Chemother (Bethesda) 1970;10:181–185. [PubMed] [Google Scholar]
- Soper T. S., Jones W. M., Manning J. M. Effects of substrates on the selective modification of the cysteinyl residues of D-amino acid transaminase. J Biol Chem. 1979 Nov 10;254(21):10901–10905. [PubMed] [Google Scholar]
- Tang C. L., Hsu R. Y. Mechanism of pigeon liver malic enzyme. Modification of sulfhydryl groups by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide. J Biol Chem. 1974 Jun 25;249(12):3916–3922. [PubMed] [Google Scholar]
- Todd M. J., Hausinger R. P. Reactivity of the essential thiol of Klebsiella aerogenes urease. Effect of pH and ligands on thiol modification. J Biol Chem. 1991 Jun 5;266(16):10260–10267. [PubMed] [Google Scholar]