Abstract
ATP-dependent H+ -pump activity was found in inverted vesicles of Methanosarcina mazei Gö1 by using acridine orange as a fluorescent probe. The H+ -pump activity specifically required both Mg and sulfite ions, but azide, an inhibitor of F0F1-ATPase, did not inhibit the activity. The membranes prepared from M. mazei also had an Mg-ATPase activity, and at least the presence of vacuolar-type ATPase was detected.
Full Text
The Full Text of this article is available as a PDF (198.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becher B., Müller V. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J Bacteriol. 1994 May;176(9):2543–2550. doi: 10.1128/jb.176.9.2543-2550.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becher B., Müller V., Gottschalk G. N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein. J Bacteriol. 1992 Dec;174(23):7656–7660. doi: 10.1128/jb.174.23.7656-7660.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaut M., Gottschalk G. Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem. 1984 May 15;141(1):217–222. doi: 10.1111/j.1432-1033.1984.tb08178.x. [DOI] [PubMed] [Google Scholar]
- Bott M., Thauer R. K. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur J Biochem. 1989 Feb 1;179(2):469–472. doi: 10.1111/j.1432-1033.1989.tb14576.x. [DOI] [PubMed] [Google Scholar]
- Bowman B. J., Bowman E. J. H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol. 1986;94(2):83–97. doi: 10.1007/BF01871190. [DOI] [PubMed] [Google Scholar]
- Chen W., Konisky J. Characterization of a membrane-associated ATPase from Methanococcus voltae, a methanogenic member of the Archaea. J Bacteriol. 1993 Sep;175(17):5677–5682. doi: 10.1128/jb.175.17.5677-5682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doddema H. J., Hutten T. J., van der Drift C., Vogels G. D. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. J Bacteriol. 1978 Oct;136(1):19–23. doi: 10.1128/jb.136.1.19-23.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dybas M., Konisky J. Energy transduction in the methanogen Methanococcus voltae is based on a sodium current. J Bacteriol. 1992 Sep;174(17):5575–5583. doi: 10.1128/jb.174.17.5575-5583.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstein L. I. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase. FEMS Microbiol Lett. 1992 Oct 1;76(1-2):155–159. doi: 10.1111/j.1574-6968.1992.tb05455.x. [DOI] [PubMed] [Google Scholar]
- Hochstein L. I., Stan-Lotter H. Purification and properties of an ATPase from Sulfolobus solfataricus. Arch Biochem Biophys. 1992 May 15;295(1):153–160. doi: 10.1016/0003-9861(92)90501-m. [DOI] [PubMed] [Google Scholar]
- Inatomi K. Characterization and purification of the membrane-bound ATPase of the archaebacterium Methanosarcina barkeri. J Bacteriol. 1986 Sep;167(3):837–841. doi: 10.1128/jb.167.3.837-841.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inatomi K., Eya S., Maeda M., Futai M. Amino acid sequence of the alpha and beta subunits of Methanosarcina barkeri ATPase deduced from cloned genes. Similarity to subunits of eukaryotic vacuolar and F0F1-ATPases. J Biol Chem. 1989 Jul 5;264(19):10954–10959. [PubMed] [Google Scholar]
- Inatomi K., Kamagata Y., Nakamura K. Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila. J Bacteriol. 1993 Jan;175(1):80–84. doi: 10.1128/jb.175.1.80-84.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inatomi K., Maeda M., Futai M. Dicyclohexylcarbodiimide-binding protein is a subunit of the Methanosarcina barkeri ATPase complex. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1585–1590. doi: 10.1016/0006-291x(89)90856-5. [DOI] [PubMed] [Google Scholar]
- Kane P. M., Yamashiro C. T., Stevens T. H. Biochemical characterization of the yeast vacuolar H(+)-ATPase. J Biol Chem. 1989 Nov 15;264(32):19236–19244. [PubMed] [Google Scholar]
- Konishi J., Wakagi T., Oshima T., Yoshida M. Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius. J Biochem. 1987 Dec;102(6):1379–1387. doi: 10.1093/oxfordjournals.jbchem.a122184. [DOI] [PubMed] [Google Scholar]
- Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an enzyme of the F1F0 type. Eur J Biochem. 1987 Oct 15;168(2):475–480. doi: 10.1111/j.1432-1033.1987.tb13441.x. [DOI] [PubMed] [Google Scholar]
- Lübben M., Schäfer G. A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem. 1987 May 4;164(3):533–540. doi: 10.1111/j.1432-1033.1987.tb11159.x. [DOI] [PubMed] [Google Scholar]
- Mountfort D. O. Evidence from ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1346–1351. doi: 10.1016/0006-291x(78)91151-8. [DOI] [PubMed] [Google Scholar]
- Nanba T., Mukohata Y. A membrane-bound ATPase from Halobacterium halobium: purification and characterization. J Biochem. 1987 Sep;102(3):591–598. doi: 10.1093/oxfordjournals.jbchem.a122092. [DOI] [PubMed] [Google Scholar]
- Peinemann S., Blaut M., Gottschalk G. ATP synthesis coupled to methane formation from methyl-CoM and H2 catalyzed by vesicles of the methanogenic bacterial strain Gö1. Eur J Biochem. 1989 Dec 8;186(1-2):175–180. doi: 10.1111/j.1432-1033.1989.tb15192.x. [DOI] [PubMed] [Google Scholar]
- Scheel E., Schäfer G. Chemiosmotic energy conversion and the membrane ATPase of Methanolobus tindarius. Eur J Biochem. 1990 Feb 14;187(3):727–735. doi: 10.1111/j.1432-1033.1990.tb15360.x. [DOI] [PubMed] [Google Scholar]
- Stan-Lotter H., Bowman E. J., Hochstein L. I. Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases. Arch Biochem Biophys. 1991 Jan;284(1):116–119. doi: 10.1016/0003-9861(91)90272-k. [DOI] [PubMed] [Google Scholar]
- Sumi M., Sato M. H., Denda K., Date T., Yoshida M. A DNA fragment homologous to F1-ATPase beta subunit was amplified from genomic DNA of Methanosarcina barkeri. Indication of an archaebacterial F-type ATPase. FEBS Lett. 1992 Dec 21;314(3):207–210. doi: 10.1016/0014-5793(92)81472-x. [DOI] [PubMed] [Google Scholar]
- Tsuchiya T., Misawa A., Miyake Y., Yamasaki K., Niiya S. Solubilization and reconstitution of membrane energy-transducing systems of Escherichia coli. FEBS Lett. 1982 Jun 7;142(2):231–234. doi: 10.1016/0014-5793(82)80141-5. [DOI] [PubMed] [Google Scholar]