Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 May;178(9):2656–2661. doi: 10.1128/jb.178.9.2656-2661.1996

NADPH-dependent reductive ortho dehalogenation of 2,4-dichlorobenzoic acid in Corynebacterium sepedonicum KZ-4 and Coryneform bacterium strainNTB-1 via 2,4-dichlorobenzoyl coenzyme A.

V Romanov 1, R P Hausinger 1
PMCID: PMC177992  PMID: 8626335

Abstract

Corynebacterium sepedonicum KZ-4, described earlier as a strain capable of growth on 2,4-dichlorobenzoate (G.M. Zaitsev and Y.N. Karasevich, Mikrobiologiya 54:356-369, 1985), is known to metabolize this substrate via 4-hydroxybenzoate and protocatechuate, and evidence consistent with an initial reductive dechlorination step to form 4-chlorobenzoate was found in another coryneform bacterium, strain NTB-1 (W.J.J. van den Tweel, J.B. Kok, and J.A.M. de Bont, Appl. Environ. Microbiol. 53:810-815, 1987). 2-Chloro-4-fluorobenzoate was found to be converted stoichiometrically to 4-fluorobenzoate by resting cells of strain KZ-4, compatible with a reductive process. Experiments with cell extracts demonstrated that Mg - ATP and coenzyme A (CoA) were required to stimulate reductive dehalogenation, consistent with the intermediacy of 2-chloro-4-fluoro-benzoyl-CoA and 2,4-dichlorobenzoyl-CoA thioesters. 2,4-Dichlorobenzoyl-CoA was shown to be converted to 4-chlorobenzoyl-CoA in a novel NADPH-dependent reaction in extracts of both KZ-4 and NTB-1. In addition to the ligase and reductive dehalogenase activities, hydrolytic 4-chlorobenzoyl-CoA dehalogenase and thioesterase activities, 4-hydroxybenzoate 3-monooxygenase, and protocatechuate 3,4-dioxygenase activities were demonstrated to be present in the soluble fraction of KZ-4 extracts following ultracentrifugation. We propose that the pathway for 2,4-dichlorobenzoate catabolism in strains KZ-4 and NTB-1 involves formation of 2,4-dichlorobenzoyl-CoA, NADPH-dependent ortho dehalogenation yielding 4-chlorobenzoyl-CoA, hydrolytic removal of chlorine from the para position to generate 4-hydroxybenzoyl-CoA, hydrolysis to form 4-hydroxybenzoate, oxidation to yield protocatechuate, and oxidative ring cleavage.

Full Text

The Full Text of this article is available as a PDF (225.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhat G. B., Iwase K., Hummel B. C., Walfish P. G. Kinetic characteristics of a thioredoxin-activated rat hepatic and renal low-Km iodothyronine 5'-deiodinase. Biochem J. 1989 Mar 15;258(3):785–792. doi: 10.1042/bj2580785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Chang K. H., Liang P. H., Beck W., Scholten J. D., Dunaway-Mariano D. Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry. 1992 Jun 23;31(24):5605–5610. doi: 10.1021/bi00139a025. [DOI] [PubMed] [Google Scholar]
  4. Crooks G. P., Copley S. D. Purification and characterization of 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain 4-CB1. Biochemistry. 1994 Sep 27;33(38):11645–11649. doi: 10.1021/bi00204a028. [DOI] [PubMed] [Google Scholar]
  5. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elder D. J., Kelly D. J. The bacterial degradation of benzoic acid and benzenoid compounds under anaerobic conditions: unifying trends and new perspectives. FEMS Microbiol Rev. 1994 Apr;13(4):441–468. doi: 10.1111/j.1574-6976.1994.tb00061.x. [DOI] [PubMed] [Google Scholar]
  7. Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
  8. Fetzner S., Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev. 1994 Dec;58(4):641–685. doi: 10.1128/mr.58.4.641-685.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furukawa K., Chakrabarty A. M. Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol. 1982 Sep;44(3):619–626. doi: 10.1128/aem.44.3.619-626.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goswami A., Rosenberg I. N. Ferredoxin and ferredoxin reductase activities in bovine thyroid. Possible relationship to iodotyrosine deiodinase. J Biol Chem. 1981 Jan 25;256(2):893–899. [PubMed] [Google Scholar]
  11. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  12. Hickey W. J., Searles D. B., Focht D. D. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl Environ Microbiol. 1993 Apr;59(4):1194–1200. doi: 10.1128/aem.59.4.1194-1200.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Häggblom M. M. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev. 1992 Sep;9(1):29–71. doi: 10.1111/j.1574-6968.1992.tb05823.x. [DOI] [PubMed] [Google Scholar]
  14. Janssen D. B., Pries F., van der Ploeg J. R. Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol. 1994;48:163–191. doi: 10.1146/annurev.mi.48.100194.001115. [DOI] [PubMed] [Google Scholar]
  15. Koch J., Eisenreich W., Bacher A., Fuchs G. Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur J Biochem. 1993 Feb 1;211(3):649–661. doi: 10.1111/j.1432-1033.1993.tb17593.x. [DOI] [PubMed] [Google Scholar]
  16. Li S., Wackett L. P. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis. Biochemistry. 1993 Sep 14;32(36):9355–9361. doi: 10.1021/bi00087a014. [DOI] [PubMed] [Google Scholar]
  17. Lochmeyer C., Koch J., Fuchs G. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium. J Bacteriol. 1992 Jun;174(11):3621–3628. doi: 10.1128/jb.174.11.3621-3628.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Löffler F., Lingens F., Müller R. Dehalogenation of 4-chlorobenzoate. Characterisation of 4-chlorobenzoyl-coenzyme A dehalogenase from Pseudomonas sp. CBS3. Biodegradation. 1995 Sep;6(3):203–212. doi: 10.1007/BF00700458. [DOI] [PubMed] [Google Scholar]
  19. Löffler F., Müller R., Lingens F. Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from pseudomonas sp. CBS3: an ATP/coenzyme A dependent reaction. Biochem Biophys Res Commun. 1991 May 15;176(3):1106–1111. doi: 10.1016/0006-291x(91)90398-q. [DOI] [PubMed] [Google Scholar]
  20. Merkel S. M., Eberhard A. E., Gibson J., Harwood C. S. Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J Bacteriol. 1989 Jan;171(1):1–7. doi: 10.1128/jb.171.1.1-7.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ni S., Fredrickson J. K., Xun L. Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J Bacteriol. 1995 Sep;177(17):5135–5139. doi: 10.1128/jb.177.17.5135-5139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nozawa T., Maruyama Y. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol. 1988 Dec;170(12):5778–5784. doi: 10.1128/jb.170.12.5778-5784.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol. 1993 May;175(9):2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Romanov V., Hausinger R. P. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. J Bacteriol. 1994 Jun;176(11):3368–3374. doi: 10.1128/jb.176.11.3368-3374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmitz A., Gartemann K. H., Fiedler J., Grund E., Eichenlaub R. Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl Environ Microbiol. 1992 Dec;58(12):4068–4071. doi: 10.1128/aem.58.12.4068-4071.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scholten J. D., Chang K. H., Babbitt P. C., Charest H., Sylvestre M., Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science. 1991 Jul 12;253(5016):182–185. doi: 10.1126/science.1853203. [DOI] [PubMed] [Google Scholar]
  28. Shimao M., Onishi S., Mizumori S., Kato N., Sakazawa C. Degradation of 4-Chlorobenzoate by Facultatively Alkalophilic Arthrobacter sp. Strain SB8. Appl Environ Microbiol. 1989 Feb;55(2):478–482. doi: 10.1128/aem.55.2.478-482.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Xun L., Topp E., Orser C. S. Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol. 1992 Dec;174(24):8003–8007. doi: 10.1128/jb.174.24.8003-8007.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yang G., Liang P. H., Dunaway-Mariano D. Evidence for nucleophilic catalysis in the aromatic substitution reaction catalyzed by (4-chlorobenzoyl)coenzyme A dehalogenase. Biochemistry. 1994 Jul 19;33(28):8527–8531. doi: 10.1021/bi00194a018. [DOI] [PubMed] [Google Scholar]
  31. van den Tweel W. J., Kok J. B., de Bont J. A. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl Environ Microbiol. 1987 Apr;53(4):810–815. doi: 10.1128/aem.53.4.810-815.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES