Abstract
Corynebacterium sepedonicum KZ-4, described earlier as a strain capable of growth on 2,4-dichlorobenzoate (G.M. Zaitsev and Y.N. Karasevich, Mikrobiologiya 54:356-369, 1985), is known to metabolize this substrate via 4-hydroxybenzoate and protocatechuate, and evidence consistent with an initial reductive dechlorination step to form 4-chlorobenzoate was found in another coryneform bacterium, strain NTB-1 (W.J.J. van den Tweel, J.B. Kok, and J.A.M. de Bont, Appl. Environ. Microbiol. 53:810-815, 1987). 2-Chloro-4-fluorobenzoate was found to be converted stoichiometrically to 4-fluorobenzoate by resting cells of strain KZ-4, compatible with a reductive process. Experiments with cell extracts demonstrated that Mg - ATP and coenzyme A (CoA) were required to stimulate reductive dehalogenation, consistent with the intermediacy of 2-chloro-4-fluoro-benzoyl-CoA and 2,4-dichlorobenzoyl-CoA thioesters. 2,4-Dichlorobenzoyl-CoA was shown to be converted to 4-chlorobenzoyl-CoA in a novel NADPH-dependent reaction in extracts of both KZ-4 and NTB-1. In addition to the ligase and reductive dehalogenase activities, hydrolytic 4-chlorobenzoyl-CoA dehalogenase and thioesterase activities, 4-hydroxybenzoate 3-monooxygenase, and protocatechuate 3,4-dioxygenase activities were demonstrated to be present in the soluble fraction of KZ-4 extracts following ultracentrifugation. We propose that the pathway for 2,4-dichlorobenzoate catabolism in strains KZ-4 and NTB-1 involves formation of 2,4-dichlorobenzoyl-CoA, NADPH-dependent ortho dehalogenation yielding 4-chlorobenzoyl-CoA, hydrolytic removal of chlorine from the para position to generate 4-hydroxybenzoyl-CoA, hydrolysis to form 4-hydroxybenzoate, oxidation to yield protocatechuate, and oxidative ring cleavage.
Full Text
The Full Text of this article is available as a PDF (225.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhat G. B., Iwase K., Hummel B. C., Walfish P. G. Kinetic characteristics of a thioredoxin-activated rat hepatic and renal low-Km iodothyronine 5'-deiodinase. Biochem J. 1989 Mar 15;258(3):785–792. doi: 10.1042/bj2580785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Chang K. H., Liang P. H., Beck W., Scholten J. D., Dunaway-Mariano D. Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry. 1992 Jun 23;31(24):5605–5610. doi: 10.1021/bi00139a025. [DOI] [PubMed] [Google Scholar]
- Crooks G. P., Copley S. D. Purification and characterization of 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain 4-CB1. Biochemistry. 1994 Sep 27;33(38):11645–11649. doi: 10.1021/bi00204a028. [DOI] [PubMed] [Google Scholar]
- Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elder D. J., Kelly D. J. The bacterial degradation of benzoic acid and benzenoid compounds under anaerobic conditions: unifying trends and new perspectives. FEMS Microbiol Rev. 1994 Apr;13(4):441–468. doi: 10.1111/j.1574-6976.1994.tb00061.x. [DOI] [PubMed] [Google Scholar]
- Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
- Fetzner S., Lingens F. Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev. 1994 Dec;58(4):641–685. doi: 10.1128/mr.58.4.641-685.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furukawa K., Chakrabarty A. M. Involvement of plasmids in total degradation of chlorinated biphenyls. Appl Environ Microbiol. 1982 Sep;44(3):619–626. doi: 10.1128/aem.44.3.619-626.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goswami A., Rosenberg I. N. Ferredoxin and ferredoxin reductase activities in bovine thyroid. Possible relationship to iodotyrosine deiodinase. J Biol Chem. 1981 Jan 25;256(2):893–899. [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hickey W. J., Searles D. B., Focht D. D. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl Environ Microbiol. 1993 Apr;59(4):1194–1200. doi: 10.1128/aem.59.4.1194-1200.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häggblom M. M. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev. 1992 Sep;9(1):29–71. doi: 10.1111/j.1574-6968.1992.tb05823.x. [DOI] [PubMed] [Google Scholar]
- Janssen D. B., Pries F., van der Ploeg J. R. Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol. 1994;48:163–191. doi: 10.1146/annurev.mi.48.100194.001115. [DOI] [PubMed] [Google Scholar]
- Koch J., Eisenreich W., Bacher A., Fuchs G. Products of enzymatic reduction of benzoyl-CoA, a key reaction in anaerobic aromatic metabolism. Eur J Biochem. 1993 Feb 1;211(3):649–661. doi: 10.1111/j.1432-1033.1993.tb17593.x. [DOI] [PubMed] [Google Scholar]
- Li S., Wackett L. P. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis. Biochemistry. 1993 Sep 14;32(36):9355–9361. doi: 10.1021/bi00087a014. [DOI] [PubMed] [Google Scholar]
- Lochmeyer C., Koch J., Fuchs G. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium. J Bacteriol. 1992 Jun;174(11):3621–3628. doi: 10.1128/jb.174.11.3621-3628.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Löffler F., Lingens F., Müller R. Dehalogenation of 4-chlorobenzoate. Characterisation of 4-chlorobenzoyl-coenzyme A dehalogenase from Pseudomonas sp. CBS3. Biodegradation. 1995 Sep;6(3):203–212. doi: 10.1007/BF00700458. [DOI] [PubMed] [Google Scholar]
- Löffler F., Müller R., Lingens F. Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from pseudomonas sp. CBS3: an ATP/coenzyme A dependent reaction. Biochem Biophys Res Commun. 1991 May 15;176(3):1106–1111. doi: 10.1016/0006-291x(91)90398-q. [DOI] [PubMed] [Google Scholar]
- Merkel S. M., Eberhard A. E., Gibson J., Harwood C. S. Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J Bacteriol. 1989 Jan;171(1):1–7. doi: 10.1128/jb.171.1.1-7.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ni S., Fredrickson J. K., Xun L. Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J Bacteriol. 1995 Sep;177(17):5135–5139. doi: 10.1128/jb.177.17.5135-5139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozawa T., Maruyama Y. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol. 1988 Dec;170(12):5778–5784. doi: 10.1128/jb.170.12.5778-5784.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol. 1993 May;175(9):2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romanov V., Hausinger R. P. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. J Bacteriol. 1994 Jun;176(11):3368–3374. doi: 10.1128/jb.176.11.3368-3374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz A., Gartemann K. H., Fiedler J., Grund E., Eichenlaub R. Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl Environ Microbiol. 1992 Dec;58(12):4068–4071. doi: 10.1128/aem.58.12.4068-4071.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholten J. D., Chang K. H., Babbitt P. C., Charest H., Sylvestre M., Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science. 1991 Jul 12;253(5016):182–185. doi: 10.1126/science.1853203. [DOI] [PubMed] [Google Scholar]
- Shimao M., Onishi S., Mizumori S., Kato N., Sakazawa C. Degradation of 4-Chlorobenzoate by Facultatively Alkalophilic Arthrobacter sp. Strain SB8. Appl Environ Microbiol. 1989 Feb;55(2):478–482. doi: 10.1128/aem.55.2.478-482.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xun L., Topp E., Orser C. S. Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol. 1992 Dec;174(24):8003–8007. doi: 10.1128/jb.174.24.8003-8007.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang G., Liang P. H., Dunaway-Mariano D. Evidence for nucleophilic catalysis in the aromatic substitution reaction catalyzed by (4-chlorobenzoyl)coenzyme A dehalogenase. Biochemistry. 1994 Jul 19;33(28):8527–8531. doi: 10.1021/bi00194a018. [DOI] [PubMed] [Google Scholar]
- van den Tweel W. J., Kok J. B., de Bont J. A. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl Environ Microbiol. 1987 Apr;53(4):810–815. doi: 10.1128/aem.53.4.810-815.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]