Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 May;178(9):2668–2675. doi: 10.1128/jb.178.9.2668-2675.1996

Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824.

M F Gorwa 1, C Croux 1, P Soucaille 1
PMCID: PMC177994  PMID: 8626337

Abstract

A 2.8-kbp DNA region of Clostridium acetobutylicum ATCC 824 containing the putative hydrogenase gene (hydA) was cloned and sequenced. The 1,745-bp hydA encodes a 64,415-Da protein and presents strong identity with the [Fe] hydrogenase genes of Desulfovibrio and Clostridium species. The level of the putative hydA mRNA was high in cells from an acidogenic or an alcohologenic phosphate-limited continuous culture, while it was comparatively very low in cells from a solventogenic phosphate-limited continuous culture. These results were in agreement with the hydrogenase protein level, indicating that expression of hydA is regulated at the transcriptional level. Primer extension analysis identified a major transcriptional start site 90 bp upstream of the hydA start codon. The position of a putative rho-independent transcription terminator immediately downstream of the termination codon is in agreement with the size of the hydA transcript (1.9 kb) determined by Northern (RNA) blot experiments and confirms that the gene is transcribed as a monocistronic operon. Two truncated open reading frames (ORFs) were identified downstream and upstream of hydA and in opposite directions. The amino acid sequence deduced from ORF2 presents strong identity with ortho phosphoribosyl transferases involved in pyrimidine synthesis. The amino acid sequence deduced from ORF3 presents no significant similarity to any sequence in various available databases.

Full Text

The Full Text of this article is available as a PDF (543.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E., Chen J. S. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. doi: 10.1016/0304-4173(80)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Adams M. W. The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta. 1990 Nov 5;1020(2):115–145. doi: 10.1016/0005-2728(90)90044-5. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Beinert H. Recent developments in the field of iron-sulfur proteins. FASEB J. 1990 May;4(8):2483–2491. doi: 10.1096/fasebj.4.8.2185975. [DOI] [PubMed] [Google Scholar]
  5. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cary J. W., Petersen D. J., Papoutsakis E. T., Bennett G. N. Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli. J Bacteriol. 1988 Oct;170(10):4613–4618. doi: 10.1128/jb.170.10.4613-4618.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cunningham R. P., Asahara H., Bank J. F., Scholes C. P., Salerno J. C., Surerus K., Münck E., McCracken J., Peisach J., Emptage M. H. Endonuclease III is an iron-sulfur protein. Biochemistry. 1989 May 16;28(10):4450–4455. doi: 10.1021/bi00436a049. [DOI] [PubMed] [Google Scholar]
  8. Datta R., Zeikus J. G. Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids. Appl Environ Microbiol. 1985 Mar;49(3):522–529. doi: 10.1128/aem.49.3.522-529.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ebright R. H., Kolb A., Buc H., Kunkel T. A., Krakow J. S., Beckwith J. Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6083–6087. doi: 10.1073/pnas.84.17.6083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GRAY C. T., GEST H. BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN. Science. 1965 Apr 9;148(3667):186–192. doi: 10.1126/science.148.3667.186. [DOI] [PubMed] [Google Scholar]
  12. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  13. Gerischer U., Dürre P. mRNA analysis of the adc gene region of Clostridium acetobutylicum during the shift to solventogenesis. J Bacteriol. 1992 Jan;174(2):426–433. doi: 10.1128/jb.174.2.426-433.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Girbal L., Vasconcelos I., Soucaille P. Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased. J Bacteriol. 1994 Oct;176(19):6146–6147. doi: 10.1128/jb.176.19.6146-6147.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hausinger R. P., Howard J. B. Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J Biol Chem. 1983 Nov 25;258(22):13486–13492. [PubMed] [Google Scholar]
  16. Jones D. T., Woods D. R. Acetone-butanol fermentation revisited. Microbiol Rev. 1986 Dec;50(4):484–524. doi: 10.1128/mr.50.4.484-524.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim B. H., Bellows P., Datta R., Zeikus J. G. Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields. Appl Environ Microbiol. 1984 Oct;48(4):764–770. doi: 10.1128/aem.48.4.764-770.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malki S., Saimmaime I., De Luca G., Rousset M., Dermoun Z., Belaich J. P. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol. 1995 May;177(10):2628–2636. doi: 10.1128/jb.177.10.2628-2636.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meyer J., Gagnon J. Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry. 1991 Oct 8;30(40):9697–9704. doi: 10.1021/bi00104a018. [DOI] [PubMed] [Google Scholar]
  20. Meyer J. Sequence of a 10.5 kbp fragment of Clostridium pasteurianum genomic DNA encompassing the hydrogenase I gene and two spore germination genes. Anaerobe. 1995 Jun;1(3):169–174. doi: 10.1006/anae.1995.1015. [DOI] [PubMed] [Google Scholar]
  21. Papoutsakis E. T., Bennett G. N. Cloning, structure, and expression of acid and solvent pathway genes of Clostridium acetobutylicum. Biotechnology. 1993;25:157–199. [PubMed] [Google Scholar]
  22. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peguin S., Soucaille P. Modulation of Carbon and Electron Flow in Clostridium acetobutylicum by Iron Limitation and Methyl Viologen Addition. Appl Environ Microbiol. 1995 Jan;61(1):403–405. doi: 10.1128/aem.61.1.403-405.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Quinn C. L., Stephenson B. T., Switzer R. L. Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J Biol Chem. 1991 May 15;266(14):9113–9127. [PubMed] [Google Scholar]
  25. Rao G., Mutharasan R. Altered Electron Flow in Continuous Cultures of Clostridium acetobutylicum Induced by Viologen Dyes. Appl Environ Microbiol. 1987 Jun;53(6):1232–1235. doi: 10.1128/aem.53.6.1232-1235.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Santangelo J. D., Dürre P., Woods D. R. Characterization and expression of the hydrogenase-encoding gene from Clostridium acetobutylicum P262. Microbiology. 1995 Jan;141(Pt 1):171–180. doi: 10.1099/00221287-141-1-171. [DOI] [PubMed] [Google Scholar]
  29. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  30. Stokkermans J., van Dongen W., Kaan A., van den Berg W., Veeger C. hyd gamma, a gene from Desulfovibrio vulgaris (Hildenborough) encodes a polypeptide homologous to the periplasmic hydrogenase. FEMS Microbiol Lett. 1989 Apr;49(2-3):217–222. doi: 10.1016/0378-1097(89)90041-4. [DOI] [PubMed] [Google Scholar]
  31. Thauer R. K., Käufer B., Zähringer M., Jungermann K. The reaction of the iron-sulfur protein hydrogenase with carbon monoxide. Eur J Biochem. 1974 Mar 1;42(2):447–452. doi: 10.1111/j.1432-1033.1974.tb03358.x. [DOI] [PubMed] [Google Scholar]
  32. Vasconcelos I., Girbal L., Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol. 1994 Mar;176(5):1443–1450. doi: 10.1128/jb.176.5.1443-1450.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Voordouw G., Brenner S. Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem. 1985 May 2;148(3):515–520. doi: 10.1111/j.1432-1033.1985.tb08869.x. [DOI] [PubMed] [Google Scholar]
  34. Voordouw G., Hagen W. R., Krüse-Wolters K. M., van Berkel-Arts A., Veeger C. Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli. Eur J Biochem. 1987 Jan 2;162(1):31–36. doi: 10.1111/j.1432-1033.1987.tb10537.x. [DOI] [PubMed] [Google Scholar]
  35. Voordouw G., Strang J. D., Wilson F. R. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. J Bacteriol. 1989 Jul;171(7):3881–3889. doi: 10.1128/jb.171.7.3881-3889.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wu L. F., Mandrand M. A. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243–269. doi: 10.1111/j.1574-6968.1993.tb05870.x. [DOI] [PubMed] [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  38. Young M., Minton N. P., Staudenbauer W. L. Recent advances in the genetics of the clostridia. FEMS Microbiol Rev. 1989 Dec;5(4):301–325. doi: 10.1111/j.1574-6968.1989.tb03402.x. [DOI] [PubMed] [Google Scholar]
  39. de Crombrugghe B., Busby S., Buc H. Cyclic AMP receptor protein: role in transcription activation. Science. 1984 May 25;224(4651):831–838. doi: 10.1126/science.6372090. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES