Abstract
A mutant (M45) of the cyanobacterium Synechococcus sp. strain PCC 7942, which is defective in active transport of nitrate, was used for the studies of the nitrogen regulation of the genes involved in nitrate and CO2 assimilation. In a medium containing 30 mM nitrate as the nitrogen source, M45 grew under constant stress of nitrogen deficiency and accumulated a five-times-larger amount of the transcript of nirA, the gene for nitrite reductase, compared with nitrate-grown wild-type cells. By contrast, the level of the transcript of rbcL, the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, was 40% of the wild-type level. Addition of ammonium to the culture of M45 abolished the accumulation of the nirA transcript and stimulated the accumulation of the rbcL transcript, showing that ammonium repressed and activated the transcription of nirA and rbcL, respectively. Glutamine, the initial product of ammonium fixation, also showed negative and positive effects on nirA and rbcL, respectively. One of the metabolites of glutamine, carbamoylphosphate, and its decomposition product, cyanate, were found to repress nirA and also to markedly activate rbcL. Cyanate negatively regulated another ammonium-repressible gene, glnA, but had no effect on the psbAI and rps1 genes. The effects of cyanate were not ascribable to the ammonium and CO, resulting from its decomposition. These findings suggested that cyanate may act as a regulator of the ammonium-responsive genes involved in carbon and nitrogen assimilation in the cyanobacterium.
Full Text
The Full Text of this article is available as a PDF (377.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN C. M., Jr, JONES M. E. DECOMPOSITION OF CARBAMYLPHOSPHATE IN AQUEOUS SOLUTIONS. Biochemistry. 1964 Sep;3:1238–1247. doi: 10.1021/bi00897a010. [DOI] [PubMed] [Google Scholar]
- Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen-Kupiec R., Gurevitz M., Zilberstein A. Expression of glnA in the cyanobacterium Synechococcus sp. strain PCC 7942 is initiated from a single nif-like promoter under various nitrogen conditions. J Bacteriol. 1993 Dec;175(23):7727–7731. doi: 10.1128/jb.175.23.7727-7731.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Forchhammer K., Tandeau de Marsac N. Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol. 1995 Apr;177(8):2033–2040. doi: 10.1128/jb.177.8.2033-2040.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg D., Kaplan A., Ariel R., Kessel M., Seijffers J. The 5'-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol. 1989 Nov;171(11):6069–6076. doi: 10.1128/jb.171.11.6069-6076.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golden S. S., Brusslan J., Haselkorn R. Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J. 1986 Nov;5(11):2789–2798. doi: 10.1002/j.1460-2075.1986.tb04569.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guilloton M., Karst F. Cyanate specifically inhibits arginine biosynthesis in Escherichia coli K12: a case of by-product inhibition? J Gen Microbiol. 1987 Mar;133(3):655–665. doi: 10.1099/00221287-133-3-655. [DOI] [PubMed] [Google Scholar]
- Kuhlemeier C. J., Logtenberg T., Stoorvogel W., van Heugten H. A., Borrias W. E., van Arkel G. A. Cloning of nitrate reductase genes from the cyanobacterium Anacystis nidulans. J Bacteriol. 1984 Jul;159(1):36–41. doi: 10.1128/jb.159.1.36-41.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamblin A. F., Fuchs J. A. Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation. J Bacteriol. 1994 Nov;176(21):6613–6622. doi: 10.1128/jb.176.21.6613-6622.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrie A. C. Effect of carbamoyl phosphate on nitrogenase in Anabaena cylindrica Lemm. J Bacteriol. 1979 Jul;139(1):115–119. doi: 10.1128/jb.139.1.115-119.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luque I., Flores E., Herrero A. Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J. 1994 Jun 15;13(12):2862–2869. doi: 10.1002/j.1460-2075.1994.tb06580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luque I., Flores E., Herrero A. Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol. 1993 Mar;21(6):1201–1205. doi: 10.1007/BF00023618. [DOI] [PubMed] [Google Scholar]
- Meeks J. C., Wolk C. P., Thomas J., Lockau W., Shaffer P. W., Austin S. M., Chien W. S., Galonsky A. The pathways of assimilation of 13NH4+ by the cyanobacterium, Anabaena cylindrica. J Biol Chem. 1977 Nov 10;252(21):7894–7900. [PubMed] [Google Scholar]
- Omata T., Andriesse X., Hirano A. Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp. PCC7942. Mol Gen Genet. 1993 Jan;236(2-3):193–202. doi: 10.1007/BF00277112. [DOI] [PubMed] [Google Scholar]
- Omata T., Ohmori M., Arai N., Ogawa T. Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6612–6616. doi: 10.1073/pnas.86.17.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramasubramanian T. S., Wei T. F., Golden J. W. Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J Bacteriol. 1994 Mar;176(5):1214–1223. doi: 10.1128/jb.176.5.1214-1223.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ronzio R. A., Rowe W. B., Meister A. Studies on the mechanism of inhibition of glutamine synthetase by methionine sulfoximine. Biochemistry. 1969 Mar;8(3):1066–1075. doi: 10.1021/bi00831a038. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugita M., Sugita C., Sugiura M. Structure and expression of the gene encoding ribosomal protein S1 from the cyanobacterium Synechococcus sp. strain PCC 6301: striking sequence similarity to the chloroplast ribosomal protein CS1. Mol Gen Genet. 1995 Jan 20;246(2):142–147. doi: 10.1007/BF00294676. [DOI] [PubMed] [Google Scholar]
- Sung Y. C., Fuchs J. A. The Escherichia coli K-12 cyn operon is positively regulated by a member of the lysR family. J Bacteriol. 1992 Jun;174(11):3645–3650. doi: 10.1128/jb.174.11.3645-3650.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I., Horie N., Sugiyama T., Omata T. Identification and characterization of two nitrogen-regulated genes of the cyanobacterium Synechococcus sp. strain PCC7942 required for maximum efficiency of nitrogen assimilation. J Bacteriol. 1995 Jan;177(2):290–296. doi: 10.1128/jb.177.2.290-296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vega-Palas M. A., Flores E., Herrero A. NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol. 1992 Jul;6(13):1853–1859. doi: 10.1111/j.1365-2958.1992.tb01357.x. [DOI] [PubMed] [Google Scholar]