Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 May;178(10):2846–2852. doi: 10.1128/jb.178.10.2846-2852.1996

A single amino acid change in Escherichia coli glycerol kinase abolishes glucose control of glycerol utilization in vivo.

D W Pettigrew 1, W Z Liu 1, C Holmes 1, N D Meadow 1, S Roseman 1
PMCID: PMC178019  PMID: 8631672

Abstract

Escherichia coli glycerol kinase (EC 2.7.1.30; ATP:glycerol 3-phosphotransferase) is a key element in glucose control of glycerol metabolism. Its catalytic activity is inhibited allosterically by the glycolytic intermediate, fructose 1,6-biphosphate, and by the phosphotransferase system phosphocarrier protein, IIIGlc (also known as IIAGlc). These inhibitors provide mechanisms by which glucose blocks glycerol utilization in vivo. We report here the cloning and sequencing of the glpK22 gene isolated from E. C. C. Lin strain 43, a strain that shows the loss of glucose control of glycerol utilization. DNA sequencing shows a single missense mutation that translates to the amino acid change Gly-304 to Ser (G-304-S) in glycerol kinase. The effects of this substitution on the functional and physical properties of the purified mutant enzyme were determined. Neither of the allosteric ligands inhibits it under conditions that produce strong inhibition of the wild-type enzyme, which is sufficient to explain the phenotype of strain 43. However, IIIGlc activates the mutant enzyme, which could not be predicted from the phenotype. In the wild-type enzyme, G-304 is located 1.3 nm from the active site and 2.5 nm from the IIIGlc binding site (M. Feese, D. W. Pettigrew, N. D. Meadow, S. Roseman, and S. J. Remington, Proc. Natl. Acad. Sci. USA 91:3544-3548, 1994). It is located in the same region as amino acid substitutions in the related protein DnaK which alter its catalytic and regulatory properties and which are postulated to interfere with a domain closure motion (A. S. Kamath-Loeb, C. Z. Lu, W.-C. Suh, M. A. Lonetto, and C. A. Gross, J. Biol. Chem. 270:30051-30059, 1995). The global effect of the G-304-S substitution on the conformation and catalytic and regulatory properties of glycerol kinase is consistent with a role for the domain closure motion in the molecular mechanism for glucose control of glycerol utilization.

Full Text

The Full Text of this article is available as a PDF (877.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchberger A., Valencia A., McMacken R., Sander C., Bukau B. The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 1994 Apr 1;13(7):1687–1695. doi: 10.1002/j.1460-2075.1994.tb06433.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Faber H. R., Pettigrew D. W., Remington S. J. Crystallization and preliminary X-ray studies of Escherichia coli glycerol kinase. J Mol Biol. 1989 Jun 5;207(3):637–639. doi: 10.1016/0022-2836(89)90473-7. [DOI] [PubMed] [Google Scholar]
  3. Feese M., Pettigrew D. W., Meadow N. D., Roseman S., Remington S. J. Cation-promoted association of a regulatory and target protein is controlled by protein phosphorylation. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3544–3548. doi: 10.1073/pnas.91.9.3544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holmes K. C., Sander C., Valencia A. A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol. 1993 Feb;3(2):53–59. doi: 10.1016/0962-8924(93)90161-s. [DOI] [PubMed] [Google Scholar]
  5. Hurley J. H., Faber H. R., Worthylake D., Meadow N. D., Roseman S., Pettigrew D. W., Remington S. J. Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Science. 1993 Jan 29;259(5095):673–677. [PubMed] [Google Scholar]
  6. Kamath-Loeb A. S., Lu C. Z., Suh W. C., Lonetto M. A., Gross C. A. Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J Biol Chem. 1995 Dec 15;270(50):30051–30059. doi: 10.1074/jbc.270.50.30051. [DOI] [PubMed] [Google Scholar]
  7. Liu W. Z., Faber R., Feese M., Remington S. J., Pettigrew D. W. Escherichia coli glycerol kinase: role of a tetramer interface in regulation by fructose 1,6-bisphosphate and phosphotransferase system regulatory protein IIIglc. Biochemistry. 1994 Aug 23;33(33):10120–10126. doi: 10.1021/bi00199a040. [DOI] [PubMed] [Google Scholar]
  8. Meadow N. D., Fox D. K., Roseman S. The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem. 1990;59:497–542. doi: 10.1146/annurev.bi.59.070190.002433. [DOI] [PubMed] [Google Scholar]
  9. Novotny M. J., Frederickson W. L., Waygood E. B., Saier M. H., Jr Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1985 May;162(2):810–816. doi: 10.1128/jb.162.2.810-816.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pelton J. G., Torchia D. A., Meadow N. D., Wong C. Y., Roseman S. 1H, 15N, and 13C NMR signal assignments of IIIGlc, a signal-transducing protein of Escherichia coli, using three-dimensional triple-resonance techniques. Biochemistry. 1991 Oct 15;30(41):10043–10057. doi: 10.1021/bi00105a032. [DOI] [PubMed] [Google Scholar]
  11. Pettigrew D. W., Ma D. P., Conrad C. A., Johnson J. R. Escherichia coli glycerol kinase. Cloning and sequencing of the glpK gene and the primary structure of the enzyme. J Biol Chem. 1988 Jan 5;263(1):135–139. [PubMed] [Google Scholar]
  12. Pettigrew D. W., Yu G. J., Liu Y. Nucleotide regulation of Escherichia coli glycerol kinase: initial-velocity and substrate binding studies. Biochemistry. 1990 Sep 18;29(37):8620–8627. doi: 10.1021/bi00489a018. [DOI] [PubMed] [Google Scholar]
  13. Plunkett G., 3rd, Burland V., Daniels D. L., Blattner F. R. Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391–3398. doi: 10.1093/nar/21.15.3391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Postma P. W., Epstein W., Schuitema A. R., Nelson S. O. Interaction between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium. J Bacteriol. 1984 Apr;158(1):351–353. doi: 10.1128/jb.158.1.351-353.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Postma P. W., Lengeler J. W., Jacobson G. R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993 Sep;57(3):543–594. doi: 10.1128/mr.57.3.543-594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saier M. H., Jr Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev. 1989 Mar;53(1):109–120. doi: 10.1128/mr.53.1.109-120.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stewart G. S., Lubinsky-Mink S., Jackson C. G., Cassel A., Kuhn J. pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid. 1986 May;15(3):172–181. doi: 10.1016/0147-619x(86)90035-1. [DOI] [PubMed] [Google Scholar]
  18. Voegele R. T., Sweet G. D., Boos W. Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator. J Bacteriol. 1993 Feb;175(4):1087–1094. doi: 10.1128/jb.175.4.1087-1094.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilbanks S. M., DeLuca-Flaherty C., McKay D. B. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. I. Kinetic analyses of active site mutants. J Biol Chem. 1994 Apr 29;269(17):12893–12898. [PubMed] [Google Scholar]
  20. Zwaig N., Kistler W. S., Lin E. C. Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J Bacteriol. 1970 Jun;102(3):753–759. doi: 10.1128/jb.102.3.753-759.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zwaig N., Lin E. C. Feedback inhibition of glycerol kinase, a catabolic enzyme in Escherichia coli. Science. 1966 Aug 12;153(3737):755–757. doi: 10.1126/science.153.3737.755. [DOI] [PubMed] [Google Scholar]
  22. de Riel J. K., Paulus H. Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 1. Kinetic evidence. Biochemistry. 1978 Nov 28;17(24):5134–5140. doi: 10.1021/bi00617a010. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES